Skip to main content
Log in

High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial production of high amounts of 2,3-butanediol (2,3-BD) from glycerol as a sole carbon source by the Bulgarian isolate Klebsiella pneumoniae G31 was studied in a series of fed-batch processes. The following conditions were evaluated as optimal: micro-aerobic cultivation in modified media, without pH control. Beginning at pH 8, 49.2 g/l of 2,3-BD was produced as negligible concentrations of by-products were received. The pH is the most important factor ruling the 2,3-BD production. Spontaneous pH changes and products formation in time were investigated, performing fermentations with non-controlled pH starting at different initial pH. In lack of external maintenance, the microorganism attempted to control the pH using acetate/2,3-BD alternations of the oxidative pathway of glycerol catabolism, which resulted in pH fluctuations. Thus, the culture secreted 2,3-BD at unequal portions, either allowing or detaining the acetate synthesis. More alkaline initial pH led to enhanced 2,3-BD accumulation as a response to the increased amplitudes of the pH variations. When the pH was maintained constant, the yield of 2,3-BD was very poor. These cultures remained viable only 72 h; whereas, the pH self-controlling cells lived and produced 2,3-BD up to 280 h. In conclusion, the formation of 2,3-BD is a result of an adaptive mechanism of pH self-control, responding to spontaneous pH drops during glycerol fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Glycerol fermentation to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50:24–29

    Article  CAS  Google Scholar 

  • Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  Google Scholar 

  • Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419

    Article  CAS  Google Scholar 

  • Hao J, Lin R, Zheng Z, Liu H, Liu D (2008) Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World J Microbiol Biotechnol 24:1731–1740

    Article  CAS  Google Scholar 

  • Jarvis GN, Moore ERB, Thiele JH (1997) Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J Appl Microbiol 83:166–174

    Article  CAS  Google Scholar 

  • Ji XJ, Huang H, Li S, Du J, Lian M (2008) Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol Lett 30:731–734

    Article  CAS  Google Scholar 

  • Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82:49–57

    Article  CAS  Google Scholar 

  • Otagiri M, Kurisu G, Ui S, Takusagawa Y, Ohkuma M, Kudo T, Kusunoki M (2001) Crystal structure of meso-2,3-butanediol dehydrogenase in a complex with NAD+ and inhibitor mercaptoethanol at 1.7 ANGS. Resolution for understanding of chiral substrate recognition mechanisms. J Biochem (Tokyo) 129:205–208

    Article  CAS  Google Scholar 

  • Petrova P, Petrov K, Beschkov V (2009) Production of 1,3-propanediol from glycerol by newly isolated strains of Klebsiella pneumoniae. Compt Rend Acad Bulg Sci 62:233–242

    CAS  Google Scholar 

  • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18

    Article  CAS  Google Scholar 

  • Wu KJ, Saratale GD, Lo YC, Chen WM, Tseng ZJ, Chang MC, Tsai BC, Su A, Chang JS (2008) Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Bioresour Technol 99:7966–7970

    Article  CAS  Google Scholar 

  • Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917–926

    Article  CAS  Google Scholar 

  • Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024

    Article  CAS  Google Scholar 

  • Zeng AP, Biebl H, Deckwer WD (1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl Microbiol Biotechnol 33:485–489

    CAS  Google Scholar 

  • Zhao L, Zheng Y, Ma X, Wei D (2009) Effects of over-expression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1,3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions. Bioprocess Biosyst Eng 32:313–320

    Article  CAS  Google Scholar 

  • Zheng ZM, Xu YZ, Liu HJ, Guo NN, Cai ZZ, Liu DH (2008) Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol Bioeng 100:923–932

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Roman Popov (Institute of Chemical Engineering) for his excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaloyan Petrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, K., Petrova, P. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84, 659–665 (2009). https://doi.org/10.1007/s00253-009-2004-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2004-x

Keywords

Navigation