Skip to main content
Log in

Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the Klebsiella pneumoniae reduction pathway for 1,3-propanediol (1,3-PD) synthesis, glycerol is first dehydrated to 3-hydroxypropionaldehyde (3-HPA) and then reduced to 1,3-PD with NADH consumption. Rapid conversion of 3-HPA to 1,3-PD is one of the ways to improve the yield of 1,3-PD from glycerol and to avoid 3-HPA accumulation, which depends on enzyme activity of the reaction and the amount of reducing equivalents available from the oxidative pathway of glycerol. In the present study, the yqhD gene, encoding 3-propanediol oxidoreductase isoenzyme from Escherichia coli and the dhaT gene, encoding 3-propanediol oxidoreductase from K. pneumoniae were expressed individually and co-expressed in K. pneumoniae using the double tac promoter expression plasmid pEtac-dhaT-tac-yqhD. The three resultant recombinant strains (K. pneumoniae/pEtac-yqhD, K. pneumoniae/pEtac-dhaT, and K. pneumoniae/pEtac-dhaT-tac-yqhD) were used for fermentation studies. Experimental results showed that the peak values for 3-HPA production in broth of the three recombinant strains were less than 25% of that of the parent strain. Expression of dhaT reduced formation of by-products (ethanol and lactic acid) and increased molar yield of 1,3-PD slightly, while expression of yqhD did not enhance molar yield of 1,3-PD, but increased ethanol concentration in broth as NADPH participation in transforming 3-HPA to 1,3-PD allowed more cellular NADH to be used to produce ethanol. Co-expression of both genes therefore decreased by-products and increased the molar yield of 1,3-PD by 11.8%, by catalyzing 3-HPA conversion to 1,3-propanediol using two cofactors (NADH and NADPH). These results have important implications for further studies involving use of YqhD and DhaT for bioconversion of glycerol into 1,3-PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular microbiology. Wiley, New York

    Google Scholar 

  • Barbirato F, Grivet JP, Soucaille P, Bories A (1996) 3-HPA, an inhibitory metabolite of glycerol fermentation to 1, 3-propanediol by enterobacterial species. Appl Environ Microbiol 62:1448–1451

    CAS  Google Scholar 

  • Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35:668–681

    Article  CAS  Google Scholar 

  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1, 3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  • Cirde SJ, Stone L, Boruv CS (1945) Acrolein determination by means of tryptophane. Ind Eng Chem Anal Ed 17:259–262

    Article  Google Scholar 

  • Emptage M, Haynie SL, Laffend LA, Pucci JP, White G (2003) Process for the biological production of 1,3-propanediol with high titer. US patent no 651473

  • Fang HY, Zhang C, Zhuge B, Zhuge J (2009) Construction of novel recombinant strains capable of producing 1, 3-propanediol. Chin J Appl Environ Biol 15(5):708–712

    CAS  Google Scholar 

  • Forage RG, Foster AM (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419

    CAS  Google Scholar 

  • Forage R, Lin ECC (1982) dha system mediating aerobic and anaerobic dissimilation of glycerolin Klebsiella pneumoniae NCIB418. J Bacteriol 15:591–593

    Google Scholar 

  • Fournet-Fayard S, Joly B, Forestier C (1995) Transformation of wild type Klebsiella pneumoniae with plasmid DNA by electroporation. J Microbiol Methods 24:49–54

    Article  Google Scholar 

  • Gonzlez-Pajuedo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446

    Article  Google Scholar 

  • Kurian JV (2005) A new polymer platform for the future—Sorona from corn derived 1,3-propanediol. J Polym Environ 44:857–862

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ma Z, Rao Z, Xu L, Liao X, Fang H, Zhuge B, Zhuge J (2009) Expression of dha operon required for 1,3-PD formation in Escherichia coli and Saccharomyces cerevisiae. Curr Microbiol. doi:10.1007/s00284-009-9528-2

    Google Scholar 

  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86

    Article  CAS  Google Scholar 

  • Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28:1755–1759

    Article  CAS  Google Scholar 

  • Nemeth A, Sevella B (2008) Development of a new bioprocess for production of 1,3-propanediol: modeling of glycerol bioconversion to 1,3-propanediol with Klebsiella pneumoniae enzymes. Appl Biochem Biotechnol 144:47–58

    Article  CAS  Google Scholar 

  • Rao Z, Ma Z, Shen W, Fang H, Zhuge J, Wang X (2008) Engineered Saccharomyces cerevisiae that produces 1,3-propanediol from d-glucose. J Appl Microbiol 105:1768–1776

    Article  CAS  Google Scholar 

  • Ruch FE, Lengeler J, Lin ECC (1974) Regulation of glycerol catabolism in Klebsiella aerogenes. J Bacteriol 119:50–56

    CAS  Google Scholar 

  • Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv. doi:10.1016/j.biotechadv.2009.07.003

    Google Scholar 

  • Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024

    Article  CAS  Google Scholar 

  • Zhang XM, Zhuge J (2007) Construction of novel recombinant strain harboring glycerol dehydratase reactivating factor capable of producing 1,3-propanediol. Sheng Wu Gong Cheng Xue Bao 23:841–845

    CAS  Google Scholar 

  • Zhang XM, Tang XM, Zhuge B, Shen W, Rao ZM, Fang HY, Zhuge J (2005) Construction of novel recombinant Escherichia coli capable of production 1,3-propanediol. Sheng Wu Gong Cheng Xue Bao 21:743–747

    CAS  Google Scholar 

  • Zhang Z, Li Y, Du C, Liu M, Cao Z (2006) Inactivation of aldehyde ehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab Eng 8:578–586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Programs for High Technology Research and Development of China (2006AA020103 and 2009AA02Z210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhuge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuge, B., Zhang, C., Fang, H. et al. Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl Microbiol Biotechnol 87, 2177–2184 (2010). https://doi.org/10.1007/s00253-010-2678-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2678-0

Keywords

Navigation