Skip to main content
Log in

The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A variety of microorganism species are able naturally to produce 2,3-butanediol (2,3-BDO), although only a few of them are suitable for consideration as having potential for mass production purposes. Klebsiella pneumoniae (K. pneumoniae) is one such strain which has been widely studied and used industrially to produce 2,3-BDO. In the central carbon metabolism of K. pneumoniae, the 2,3-BDO synthesis pathway is dominated by three essential enzymes, namely acetolactate decarboxylase, acetolactate synthase, and butanediol dehydrogenase, which are encoded by the budA, budB, and budC genes, respectively. The mechanisms of the three enzymes have been characterized with regard to their function and roles in 2,3-BDO synthesis and cell growth (Blomqvist et al. in J Bacteriol 175(5):1392–1404, 1993), while a few studies have focused on the cooperative mechanisms of the three enzymes and their mutual interactions. Therefore, the K. pneumoniae KCTC2242::ΔwabG wild-type strain was utilized to reconstruct seven new mutants by single, double, and triple overexpression of the three enzymes key to this study. Subsequently, continuous cultures were performed to obtain steady-state metabolism in the organisms and experimental data were analyzed by metabolic flux analysis (MFA) to determine the regulation mechanisms. The MFA results showed that the seven overexpressed mutants all exhibited enhanced 2,3-BDO production, and the strain overexpressing the budBA gene produced the highest yield. While the enzyme encoded by the budA gene produced branched-chain amino acids which were favorable for cell growth, the budB gene enzyme rapidly enhanced the conversion of acetolactate to acetoin in an oxygen-dependent manner, and the budC gene enzyme catalyzed the reversible conversion of acetoin to 2,3-BDO and regulated the intracellular NAD+/NADH balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blomqvist K, Nikkola M, Lehtovaara P, Suihko ML, Airaksinen U, Stråby KB, Knowles JK, Penttilä ME (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella teerigena and Enterobacter aerogenes. J Bacteriol 175(5):1392–1404

    CAS  Google Scholar 

  2. Goupil-Feuillerat N, Cocaigen-Bousquet M, Codon J-J, Ehrlich SD, Renault P (1997) Dual role of α-acetolactate decarboxylase in Lactococcus lactis subsp. Lactis. J Bacteriol 179(20):6285–9293

    CAS  Google Scholar 

  3. Platteeuw C, Hugenholtz J, Starrenburg M, van Alen-Boerrigter I, de Vos WM (1995) Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol 61(11):3967–3971

    CAS  Google Scholar 

  4. Bryn K, Hetland Ø, Størmer FC (1971) The reduction of diacetyl and acetoin in Aerobacter aerogenes evidence for on enzyme catalyzing both reactions. Eur J Biochem 18(1):116–119

    Article  CAS  Google Scholar 

  5. Izquierdo L, Coderch N, Piqué N, Benini E, Corsaro MM, Merino S, Fresno S, Tomás JM, Regué M (2003) The Klebsiella pneumoniae wabG gene: role in biosynthesis of the core lipopolysaccharide and virulence. J Bacteriol 185(24):7213–7221

    Article  CAS  Google Scholar 

  6. Kim BR, Lee SJ, Park JH, Lu MS, Oh MK, Kim YR, Lee JW (2012) Enhanced 2,3-butanediol production in recombinant Klebsiella pneumoniae via overexpression of synthesis-related genes. J Mircrobiol Biotechnol 22(9):1258–1263

    Article  CAS  Google Scholar 

  7. Stephanopoulos GN, Aristido AA, Nielsen J (1998) Metabolic engineering principles and methodologies. Academic Press, San Diego

    Google Scholar 

  8. Sauer U, Hatzimanikatis V, Hohmann HP, Manneberg M, van Loon AP, Bailey JE (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl Environ Microbiol 62(10):3687–3696

    CAS  Google Scholar 

  9. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associate, Inc. Sunderland

  10. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29(3):351–364

    Article  CAS  Google Scholar 

  11. Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, van Swam II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modeling, metabolic control and experimental analysis. Microbiology 148:1003–1013

    CAS  Google Scholar 

  12. Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218

    Article  CAS  Google Scholar 

  13. Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1(5):657–662

    Article  CAS  Google Scholar 

  14. Monnet C, Nardi M, Hols P, Gulea M, Corrieu G, Monnet V (2003) Regulation of branched-chain amino acid biosynthesis by α-acetolactate decarboxylase in Streptococcus thermophilus. Lett Appl Microbiol 36:399–405

    Article  CAS  Google Scholar 

  15. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol: current state and prospects. Biotechnol Adv 20:715–725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Strategic technology development program (10035147, Development of 2,3-butanediol and derivative production technology for C-Zero bio-platform industry) funded by the Ministry of Knowledge Economy (MKE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Lee.

Appendix: List of metabolic reactions

Appendix: List of metabolic reactions

  1. 1.

    Phosphotransferase system (PTS): glucose + pep → g6p + pyr

  2. 2.

    Phosphoglucose isomerase (PGI): g6p → f6p

  3. 3.

    Polysaccharide synthesis (PSS): g6p → Polysaccharide

  4. 4.

    Phosphafructokinase (PFK): f6p + [ATP] → fdp + [ADP]

  5. 5.

    Aldolases (ALDO): fdp → dhap + gap

  6. 6.

    Triosphosphate isomerase (TIS): dhap = gap

  7. 7.

    Glyceraldehyde-3-phosphate dehydrogenase (GAPHD): gap + [NAD] = pgp + [NADH] + [h]

  8. 8.

    Phosphoglycerate kinase (PGK): pgp + [ADP] + [Pi] = 3 pg + [ATP]

  9. 9.

    Phosphoglycerate mutase (PGLUMU): 3 pg = 2 pg

  10. 10.

    Enolase (ENO): 2 pg → pep

  11. 11.

    Pyruvate kinase (PK): pep + [ADP] + [h] = pyr + [ATP]

  12. 12.

    Glucose-6-phosphate dehydrogenase (G6PDH): g6p + [NADP] → 6 pg + [NADPH] + 2[h]

  13. 13.

    6-Phosphogluconate dehydrogenase (PGDH): 6 pg + [NADP] → ribu5p + [CO2] + [NADPH]

  14. 14.

    Ribulose phosphate 3-epimerase (RU5P): ribu5p = xyl5p

  15. 15.

    Ribose-5-phosphate isomerase (R5PI): ribu5p = rib5p

  16. 16.

    BIOMASS(ex): 0.101rib5p + 0.043e4p + 0.037g6p + 0.0556g6p + 0.0407pep + 0.333pyr + 0.17oxa + 0.12accoA + 1.73[ATP] + 2.120[NAD] + 1.89[NADPH] → Biomass + 1.73[ADP] + 2.12[NADH] + 1.89[NADP]

  17. 17.

    Transketolase A (TKA): rib5p + xyl5p = gap + sed7p

  18. 18.

    Transaldolase (TA): gap + sed7p = e4p + f6p

  19. 19.

    Transketolase B (TKB): e4p + xyl5p = f6p +gap

  20. 20.

    Pyruvate dehydrogenase (PDH): pyr + [NAD] + coA → accoA + [NADH] + [CO2]

  21. 21.

    Citrate synthase (CS): accoA + oxa + [H2O] → cit + coA

  22. 22.

    Aconitase (CAN): cit = icit

  23. 23.

    Isocitrate dehydrogenase (ICD): icit + [NAD] + [CO2] = akg + [NADH]

  24. 24.

    2-Ketoglutarate dehydrogenase (KDH): akg + [NAD] → succoA + [NADH] + [CO2]

  25. 25.

    Succinate thiokinase (SCAS): succoA + [ADP] + Pi = succinate + [ATP] + coA

  26. 26.

    Succ(ex): succinate → succinate(ex)

  27. 27.

    Succinate dehydrogenase (SDH): succinate + [fad] → fum + [fadh2]

  28. 28.

    Fumarase (FUM): fum + [H2O] = mal

  29. 29.

    Malate dehydrogenase (MDH): mal + [NAD] = oxa + [NADH] + [h]

  30. 30.

    PEP carboxykinase (PCK): oxa + [ATP] = pep + [ADP] + [CO2]

  31. 31.

    Lactate dehydrogenase (LDH): pyr + [NADH] → Lactate + [NAD]

  32. 32.

    Lactate → Lactate(ex)

  33. 33.

    Acetolactate synthase (ALS): 2 pyr → aclac

  34. 34.

    Acetolactate decarboxylase (ALDC): aclac → acet

  35. 35.

    Acetoin dehydrogenase (ACETDH): acet + [NADH] → 2,3-BDO + [NAD]

  36. 36.

    2,3-BDO → 2,3-BDOex

  37. 37.

    Aldehyde dehydrogenase (ACALDH): accoA + [NADH] → acal + [NAD] + coA

  38. 38.

    Alcohol dehydrogenase (ADH): acal + [NADH] + [h] → Ethanol + [NAD]

  39. 39.

    Ethanol → Ethanol(ex)

  40. 40.

    NADH dehydrogenase I: [NADH] + [Q] = [NAD] + [QH2] + 2 [h]

  41. 41.

    Cytochrome oxidase bo3: 2 [QH2] + [O2] = 2 [Q] + 4 [h]

  42. 42.

    Pyridine nucleotide transhydrogenase: [NADPH] + [NAD] = [NADP] + [NADH]

  43. 43.

    Succinate dehydrogenase complex: [fadh2] + [Q] = [QH2] + [fad]

  44. 44.

    Pyridine nucleotide transhydrogenase: [NADP] + [NADH] + 2 [h] = [NADPH] + [NAD]

  45. 45.

    ATP drain: [ATP] = [ADP] + [Pi]

  46. 46.

    CO2 → CO2(ex)

  47. 47.

    O2 = O2(ex)

  48. 48.

    Pi = Pi(ex)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Park, C., Lee, S. et al. The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis. Bioprocess Biosyst Eng 37, 343–353 (2014). https://doi.org/10.1007/s00449-013-0999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0999-y

Keywords

Navigation