Skip to main content
Log in

Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae is known to produce meso-2,3-butanediol and 2S,3S-butanediol, whereas 2R,3R-butanediol was detected in the culture broth of K. pneumoniae CGMCC 1.6366. The ratio of 2R,3R-butanediol to all isomers obtained using glycerol as the carbon source was higher than that obtained using glucose as the carbon source. Therefore, enzymes involved in glycerol metabolism are likely related to 2R,3R-butanediol formation. In vitro reactions show that glycerol dehydrogenase catalyzes the stereospecific conversion of R-acetoin to 2R,3R-butanediol and S-acetoin to meso-2,3-butanediol. Butanediol dehydrogenase exhibits high (S)-enantioselectivity in ketone reduction. Genes encoding glycerol dehydrogenase, α-acetolactate decarboxylase, and butanediol dehydrogenase were individually disrupted in K. pneumoniae CGMCC 1.6366, and the 2,3-butanediol synthesis characteristics of these mutants were investigated. K. pneumoniae ΔdhaD lost the ability to synthesize 2R,3R-butanediol. K. pneumoniae ΔbudA showed reduced 2R,3R-butanediol synthesis. However, K. pneumoniae ΔbudC produced a high level of 2R,3R-butanediol, and R-acetoin was accumulated in the broth. The metabolic characteristics of these mutants and in vitro experiment results demonstrated the mechanism of the 2,3-butanediol stereoisomer synthesis pathway. Glycerol dehydrogenase, encoded by dhaD, exhibited 2R,3R-butanediol dehydrogenase activity and was responsible for 2R,3R-butanediol synthesis from R-acetoin. This enzyme also contributed to meso-2,3-butanediol synthesis from S-acetoin. Butanediol dehydrogenase, encoded by budC, was the only enzyme that catalyzed the conversion of diacetyl to S-acetoin and further to 2S,3S-butanediol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blomqvist K, Nikkola M, Lehtovaara P, Suihko M, Airaksinen U, Straby K, Knowles J, Penttila M (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1392–1404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27:715–725

    Article  CAS  PubMed  Google Scholar 

  • Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao J, Xu H, Li Q, Feng X, Li S (2010) Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresour Technol 101:7076–7082

    Article  CAS  Google Scholar 

  • Gao J, H-h Y, X-h F, Li S, Xu H (2013) A 2,3-butanediol dehydrogenase from Paenibacillus polymyxa ZJ-9 for mainly producing R,R-2,3-butanediol: purification, characterization and cloning. J Basic Microbiol 53:733–741

    Article  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Häßler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244

    Article  PubMed  Google Scholar 

  • Hao J, Lin R, Zheng Z, Liu H, Liu D (2008) Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World J Microbiol Biotechnol 24:1731–1740

    Article  CAS  Google Scholar 

  • Lee S, Kim B, Park K, Um Y, Lee J (2012) Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Appl Biochem Biotechnol 166:1801–1813

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang Y, Zhang L, Ma C, Wang A, Tao F, Xu P (2012) Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresour Technol 115:111–116

    Article  CAS  PubMed  Google Scholar 

  • Stormer F (1975) 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. Methods Enzymol 41:518–533

    Article  CAS  PubMed  Google Scholar 

  • Ui S, Masuda T, Masuda H, Muraki H (1986) Mechanism for the formation of 2,3-butanediol stereoisomers in Bacillus polymyxa. J Ferment Technol 64:481–486

    Article  CAS  Google Scholar 

  • UI S, Matsuyama N, Masuda H, Muraki H (1984) Mechanism for the formation of 2,3-butanediol stereoisomers in Klebsiella pneumoniae. J Ferment Technol 62:551–559

    CAS  Google Scholar 

  • Ui S, Mimura A, Ohkuma M, Kudo T (1999) Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso 2,3-butanediol dehydrogenase. Lett Appl Microbiol 28:457–460

    Article  CAS  PubMed  Google Scholar 

  • Ui S, Mimura A, Okuma M, Kudo T (1998) The production of d-acetoin by a transgenic Escherichia coli. Lett Appl Microbiol 26:275–278

    Article  CAS  PubMed  Google Scholar 

  • Ui S, Okajima Y, Mimura A, Kanai H, Kobayashi T, Kudo T (1997) Sequence analysis of the gene for and characterization of d-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. J Ferment Bioeng 83:32–37

    Article  CAS  Google Scholar 

  • Voloch M, Ladisch M, Rodwell V, Tsao G (1983) Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: a new model. Biotechnol Bioeng 25:173–183

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen T, Zhao X, Chamu J (2012) Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure d-2,3-butanediol production. Biotechnol Bioeng 109:1610–1621

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Song Q, Yu M, Wang Y, Xiong B, Zhang Y, Zheng J, Ying X (2013) Characterization of a stereospecific acetoin (diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-4870-5

    Google Scholar 

  • Wei D, Wang M, Shi J, Hao J (2012) Red recombinase assisted gene replacement in Klebsiella pneumoniae. J Ind Microbiol Biotechnol 39:1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Xu J, Sun J, Shi J, Hao J (2013) 2-Ketogluconic acid production by Klebsiella pneumoniae CGMCC 1.6366. J Ind Microbiol Biotechnol 40:561–570

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33:127–140

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Lee C, Liao J (2009) Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7:3914

    Article  CAS  PubMed  Google Scholar 

  • Zhang GL, Wang CW, Li C (2012) Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae. Biotechnol Lett 34:1519–1523

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant no. 20906076).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wang or Jian Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Wei, D., Shi, J. et al. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae . Appl Microbiol Biotechnol 98, 4603–4613 (2014). https://doi.org/10.1007/s00253-014-5526-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5526-9

Keywords

Navigation