Skip to main content
Log in

Screening of microorganisms able to degrade low-rank coal in aerobic conditions: Potential coal biosolubilization mediators from coal to biochemicals

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Coal is one of the major sources of energy, fuel, and other related chemicals. The processes to utilize coal for energy, fuel and other chemicals such as coal combustion, liquefaction, carbonization, and gasification pose a great threat to the environment by emitting toxic particles and CO2 to the atmosphere. Thus, biological beneficiation of coal can be a good strategy to utilize coal with environmental sustainability. Here, we report the screening of microorganisms able to degrade or depolymerize coal. These host strains are potential candidates for the development of biological treatment process of coal. A total of 45 microbial strains were isolated from sludge enriched with coal and were identified based on 16S rRNA sequencing. Four strains of three genera, Cupriavidus sp., Pseudomonas sp., and Alcaligenes sp., were further characterized for their abilities to degrade coal. The degree of coal degradation was analyzed by measuring the increase in absorbance at 450 nm by UV spectroscopy. These microorganisms were also able to increase the pH of the culture media as a response to the acidic nature of coal. Laccase-like activity was also found in these strains when tested for RBBR dye degradation. Since biological degradation of coal through the use of microorganisms is a good alternative to chemical combustion of coal, microbial strains isolated in this study can be potential biological catalysts for coal conversion into valuable chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fakoussa, R. M. and M. Hofrichter (1999) Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 52: 25–40.

    Article  CAS  Google Scholar 

  2. Machnikowska, H., K. Pawelec, and A. Podgórska (2002) Microbial degradation of low rank coals. Fuel Proc. Technol. 77: 17–23.

    Article  Google Scholar 

  3. Gokcay, C. F., N. Kolankaya, and F. B. Dilek (2001) Microbial solubilization of lignites. Fuel 80: 1421–1433.

    Article  CAS  Google Scholar 

  4. Selvi, A. V., R. Banerjee, L. C. Ram, and G. Singh (2009) Biodepolymerization studies of low rank Indian coals. World J. Microbiol. Biotechnol. 25: 1713–1720.

    Article  CAS  Google Scholar 

  5. Reiss, J. (1992) Studies on the solubilization of German coal by fungi. Appl. Microbiol. Biotechnol. 37: 830–832.

    Article  Google Scholar 

  6. Schobert H. H. and C. Song (2002) Chemicals and materials from coal in the 21st century. Fuel 81: 15–32.

    Article  CAS  Google Scholar 

  7. Silva-Stenico, M. E., C.J. Vengadajellum, H. A. Janjua, S. T. L. Harisson, S. G. Burton, and D. A. Cowan (2007) Degradation of low rank coal by Trichoderma atroviride ES11. J. Ind. Microbiol. Biotechnol. 34: 625–631.

    Article  CAS  Google Scholar 

  8. Romanowska I., B. Strzelecki, and S. Bielecki (2015) Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020. Fuel Proc. Technol. 131: 430–436.

    Article  CAS  Google Scholar 

  9. Quigley, D. R., B. Ward, D. L. Crawford, H. J. Hatcher, and P. R. Dugan (1989) Evidence that microbially produced alkaline materials are involved in coal biosolubilization. Appl. Biochem. Biotechnol. 20: 753–763.

    Article  Google Scholar 

  10. Jiang, F., Z. Li, Z. Lv, T. Gao, J. Yang, Z. Qin, and H. Yuan (2013) The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products. Fuel 103: 639–645.

    Article  CAS  Google Scholar 

  11. Cohen, M. S., K. A. Feldman, C. S. Brown, and E. T. Gray Jr. (1990) Isolation and identification of the coal-solubilizing agent produced by Trametes versicolor. Appl. Environ. Microbiol. 56: 3285–3291.

    CAS  Google Scholar 

  12. Yuan, H., J. Yang, and W. Chen (2006) Production of alkaline materials, surfactants and enzymes by Penicillium decumbens strain P6 in association with lignite degradation/solubilization. Fuel 85: 1378–1382.

    Article  CAS  Google Scholar 

  13. Shi, K. Y., X. X. Tao, S. D. Yin, Y. Du, and Z. P. Lv (2009) Bioliquefaction of Fushun lignite: Characterization of newly isolated lignite liquefying fungus and liquefaction products. Procedia Earth Planet. Sci. 1: 627–633.

    Article  CAS  Google Scholar 

  14. Basaran, Y. A., B. Sakintuna, A. Taralp, and Y. Yurum (2003) Bio-liquefaction/solubilization of low-rank Turkish lignites and characterization of the products. Energy & Fuels 17: 1068–1074.

    Article  CAS  Google Scholar 

  15. Gao, T. G., F. Jiang, J. S. Yang, B. Z. Li, and H. L. Yuan (2012) Biodegradation of Leonardite an Alkali-producing bacterial community and characterization of the degraded products. Appl. Microbiol. Biotechnol. 93: 2581–2590.

    Article  CAS  Google Scholar 

  16. Pokorny, R., P. Olejnikova, M. Balog, P. Zifcak, U. Holker, M. Janssen, J. Bend, M. Hofer, R. Holiencin, D. Hudecova, and L. Varecka (2005) Characterization of microorganisms isolated from lignite excavated from the Záhorie coal mine (southwestern Slovakia). Res. Microbiol. 156: 932–943.

    Article  CAS  Google Scholar 

  17. Huang X., N. Santhanam, D.V. Badri, W.J. Hunter, D. K. Manter, S. R. Decker, J. M. Vivanco, and K. F. Reardon (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol. Bioeng. 110: 1616–1626.

    Article  CAS  Google Scholar 

  18. Yin S., X. Tao, K. Shi, and Z. Tan (2009) Biosolubilization of Chinese lignite. Fuel 34: 775–781.

    CAS  Google Scholar 

  19. Sambrook, J. R. and D. W. Russell (2001) Molecular cloning: A laboratory manual. New York Cold Spring Harbor Laboratory, NY, USA.

    Google Scholar 

  20. Kiiskinen, L. L., M. Ratto, and K. Kruus (2004) Screening for novel laccase-producing microbes. J. Appl. Microbiol. 97: 640–646.

    Article  CAS  Google Scholar 

  21. Schraa, G., M. L. Boone, M. S. Jetten, A. R. van Neerven, P. J. Colberg, and A. J. Zehnder (1986) Degradation of 1, 4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381.

    CAS  Google Scholar 

  22. Claus, G. and H. J. Kutzner (1983) Degradation of indole by Alcaligenes spec. Syst. Appl. Microbiol. 4: 169–180

    Article  CAS  Google Scholar 

  23. Krooneman, J., E. B. Wieringa, E. R. Moore, J. Gerritse, R. A. Prins, and J. C. Gottschal (1996) Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro) catechols. 62: 2427–2434.

    CAS  Google Scholar 

  24. Menke, B. and H. J. Rehm (1992) Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp. A7-2. Appl. Microbiol. Biotechnol. 37: 655–661.

    Article  CAS  Google Scholar 

  25. Leonard, D., C. B. Youssef, C. Destruhaut, N. D. Lindley, and I. Queinnec (1999) Phenol degradation by Ralstonia eutropha: Colorimetric determination of 2-hydroxymuconate semialdehyde accumulation to control feed strategy in fed-batch fermentations. Biotechnol. Bioeng. 65: 407–415.

    Article  CAS  Google Scholar 

  26. Louie, T. M., C. M. Webster, and L. Xun (2002) Genetic and biochemical characterization of a 2, 4, 6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J. Bacteriol. 184: 3492–3500.

    Article  CAS  Google Scholar 

  27. Jimenez, J. I., B. Miñambres, J. L. Garcia, and E. Diaz (2002) Genomic analysis of the aromatic catabolic pathway from Pseudomonas putida KT2440. Environ. Microbiol. 4: 824–841.

    Article  CAS  Google Scholar 

  28. McMahon, A. M., E. M. Doyle, S. Brooks, and K. E. O’Connor (2007) Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enz. Microb. Technol. 40: 1435–1441.

    Article  CAS  Google Scholar 

  29. Garg, S. K., M. Tripathi, S. K. Singh, and J. K. Tiwari (2012) Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. Int. Biodeterior. Biodegrad. 74: 24–35.

    Article  CAS  Google Scholar 

  30. Chen, C. C., H. J. Liao, C. Y. Cheng, C. Y. Yen, and Y. C. Chung (2007) Biodegradation of crystal violet by Pseudomonas putida. Biotechnol. Lett. 29: 391–396.

    Article  CAS  Google Scholar 

  31. Berezina, N. B., and R. Lefebvre (2015) From organic pollutants to bioplastics: Insights into the bioremediation of aromatic compounds by Cupriavidus necator. New Biotechnol. 32: 47–53.

    Article  CAS  Google Scholar 

  32. Trefault, N., R. DE la Iglesia, A. M. Molina, M. Manzano, T. Ledger, D. Perez-Pantoja, M. A. Sanchez, M. Stuardo, and B. Gonzales (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ. Microbiol. 6: 655–668.

    Article  CAS  Google Scholar 

  33. Plumeier, I., D. Perez-Pantoja, S. Heim, B. Gonzales, and D. H. Pieper (2002) Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. J. Bacteriol. 184: 4054–4064.

    Article  CAS  Google Scholar 

  34. Makkar, N. S. and L. E. Casida Jr. (1987) Cupriavidus necator gen. nov., sp. nov.; A Nonobligate bacterial predator of bacteria in soil. Int. J. Syst. Evol. Microbiol. 37: 323–326.

    Google Scholar 

  35. Cowles, C. E., N. N. Nichols, and C. S. Harwood (2000) BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J. Bacteriol. 182: 6339–6346.

    Article  CAS  Google Scholar 

  36. Tuleva, B. K., G. R. Ivanov, and N. E. Christova (2002) Biosurfactant production by a new Pseudomonas putida strain. Zeitschrift für Naturforschung C 57: 356–360.

    Article  CAS  Google Scholar 

  37. Shi, Y., L. Chai, C. Tang, Z. Yang, H. Zhang, R. Chen, Y. Chen, and Y. Zheng (2013) Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol. Biofuels 6:1.

    Article  CAS  Google Scholar 

  38. Simmons, J. S. (1926) A culture medium for differentiating organisms of typhoid-colon aerogenes groups and for isolation of certain fungi. The J. Infect. Diseases 39: 209–214.

    Article  Google Scholar 

  39. Shi, K. Y., S. D. Yin, X. X. Tao, Y. Du, H. He, Z. P. Lv and N. Xu (2013) Quantitative measurement of coal bio-solubilization by ultraviolet-visible spectroscopy. Energy Sources, Part A 35: 1456–1462.

    Article  CAS  Google Scholar 

  40. Engesser, K. H., C. Dohms, and A. Schmid (1994) Microbial degradation of model compounds of coal and production of metabolites with potential commercial value. Fuel Proc. Technol. 40: 217–226.

    Article  CAS  Google Scholar 

  41. Fukuoka, K., K. Tanaka, Y. Ozeki, and R. A. Kanaly (2015) Biotransformation of indole by Cupriavidus sp. strain KK10 proceeds through N-heterocyclic-and carbocyclic-aromatic ring cleavage and production of indigoids. Int. Biodeterior. Biodegrad. 97: 13–24.

    Article  CAS  Google Scholar 

  42. Matus, V., M. A. Sanchez, M. Martinez, and B. Gonzales (2003) Efficient degradation of 2, 4, 6-trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134 (pJP4). Appl. Environ. Microbiol. 69: 7108–7115.

    Article  CAS  Google Scholar 

  43. Park, S. J., T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 30: 1196–1206.

    Article  CAS  Google Scholar 

  44. Lu, J., C. J. Brigham, C. S. Gai, and A. J. Sinskey (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 96: 283–297.

    Article  CAS  Google Scholar 

  45. Oh, Y. H., I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong, and S. J. Park (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Kor. J. Chem. Eng. 32: 1945–1959.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Geol Na or Si Jae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, Y., Baylon, M.G., Pamidimarri, S.D.V.N. et al. Screening of microorganisms able to degrade low-rank coal in aerobic conditions: Potential coal biosolubilization mediators from coal to biochemicals. Biotechnol Bioproc E 22, 178–185 (2017). https://doi.org/10.1007/s12257-016-0263-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0263-9

Keywords

Navigation