Skip to main content
Log in

Improved degradation of lignocellulosic biomass pretreated by Fenton-like reaction using Fe3O4 magnetic nanoparticles

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The ability of Fe3O4 Fenton-like reaction to produce glucose from lignocellulosic biomass was investigated. Fe3O4 magnetite nanoparticles were chemically synthesized from iron salts (a mixture of 1 M FeCl2 and 2M FeCl3) using an ammonia solution (30% NH4OH). The synthesized Fe3O4 nanoparticles were further characterized by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. Reed stems and rice straw biomasses pretreated with optimized Fenton-like reagents (Fe3O4 and H2O2) increased glucose production by 177 and 87%, respectively, compared to the control without the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salunke, B. K., E. Sathiyamoorthi, T. K. Tran, and B. S. Kim (2017) Phyto-synthesized silver nanoparticles for biological applications. Korean J. Chem. Eng. 34: 943–951.

    Article  CAS  Google Scholar 

  2. Salunke, B. K., S. S. Sawant, S. I. Lee, and B. S. Kim (2016) Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: Current scenario and future possibilities. World J. Microbiol. Biotechnol. 32: 1–16.

    Article  CAS  Google Scholar 

  3. Lee, S. H., B. K. Salunke, and B. S. Kim (2014) Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts. Biotechnol. Bioproc. Eng. 19: 169–174.

    Article  CAS  Google Scholar 

  4. Borase, H. P., B. K. Salunke, R. B. Salunkhe, C. D. Patil, J. E. Hallsworth, B. S. Kim, and S. V. Patil (2014) Plant extract: A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 173: 1–29.

    Article  CAS  Google Scholar 

  5. Dauthal, P. and M. Mukhopadhyay (2015) Agro-industrial wastemediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation. Korean J. Chem. Eng. 32: 837–844.

    Article  CAS  Google Scholar 

  6. Gu, X., Y. Zhang, H. Sun, X. Song, C. Fu, and P. Dong (2015) Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. J. Nanomater. 2015: 154592.

    Google Scholar 

  7. Fatima, H. and K.-S. Kim (2017) Magnetic nanoparticles for bioseparation. Korean J. Chem. Eng. 34: 589–599.

    Article  CAS  Google Scholar 

  8. Wu, W., Z. Wu, T. Yu, C. Jiang, and W. S. Kim (2015) Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16: 023501.

    Article  Google Scholar 

  9. Zhang, Y., L. Zhang, X. Song, X. Gu, H. Sun, C. Fu, and F. Meng (2015) Synthesis of superparamagnetic iron oxide nanoparticles modified with MPEG-PEI via photochemistry as new MRI contrast agent. J. Nanomater. 2015: 417389.

    Google Scholar 

  10. Zeng, T., W. W. Chen, C. M. Cirtiu, A. Moores, G. Song, and C. J. Li (2010) Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem. 12: 570–573.

    Article  CAS  Google Scholar 

  11. Gawande, M. B., P. S. Branco, and R. S. Varma (2013) Nanomagnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 42: 3371–3393.

    Article  CAS  Google Scholar 

  12. Varma, R. S. (2014) Nano-catalysts with magnetic core: Sustainable options for greener synthesis. Sustain. Chem. Proc. 2: 11.

    Article  Google Scholar 

  13. Gao, L., J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, and X. Yan (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2: 577–583.

    Article  CAS  Google Scholar 

  14. Jung, H., H. Park, J. Kim, J. H. Lee, H. G. Hur, N. V. Myung, and H. Choi (2007) Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation. Environ. Sci. Technol. 41: 4741–4747.

    Article  CAS  Google Scholar 

  15. Mei, N., B. Liu, J. Zheng, K. Lv, D. Tang, and Z. Zhang (2015) A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water. Catal. Sci. Technol. 5: 3194–3202.

    Article  CAS  Google Scholar 

  16. Wang, S., Z. Zhang, B. Liu, and J. Li (2013) Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal. Sci. Technol. 3: 2104–2112.

    Article  CAS  Google Scholar 

  17. Lai, D. M., L. Deng, Q. X. Guo, and Y. Fu (2011) Hydrolysis of biomass by magnetic solid acid. Energy Environ. Sci. 4: 3552–3557.

    Article  CAS  Google Scholar 

  18. Xiong, Y., Z. Zhang, X. Wang, B. Liu, and J. Lin (2014) Hydrolysis of cellulose in ionic liquids catalyzed by a magneticallyrecoverable solid acid catalyst. Chem. Eng. J. 235: 349–355.

    Article  CAS  Google Scholar 

  19. Wang, S., Z. Zhang, and B. Liu (2015) Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4–CoOx magnetite nanocatalyst. ACS Sustain. Chem. Eng. 3: 406–412.

    Article  CAS  Google Scholar 

  20. Bhalkikar, A., Z. C. Gernhart, and C. L. Cheung (2015) Recyclable magnetite nanoparticle catalyst for one-pot conversion of cellobiose to 5-hydroxymethylfurfural in water. J. Nanomater. 2015: 264037.

    Article  Google Scholar 

  21. Hu, L., X. Tang, Z. Wu, L. Lin, J. Xu, N. Xu, and B. Dai (2015) Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide. Chem. Eng. J. 263: 299–308.

    Article  CAS  Google Scholar 

  22. Yin, S., J. Sun, B. Liu, and Z. Zhang (2015) Magnetic material grafted cross-linked imidazolium based polyionic liquids: An efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates. J. Mater. Chem. A. 3: 4992–4999.

    Article  CAS  Google Scholar 

  23. Sawant, S. S., B. K. Salunke, T. K. Tran, and B. S. Kim (2016) Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates. Korean J. Chem. Eng. 33: 1505–1513.

    Article  CAS  Google Scholar 

  24. Binod, P., R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey (2010) Bioethanol production from rice straw: An overview. Bioresour. Technol. 101: 4767–4774.

    Article  CAS  Google Scholar 

  25. Sawant, S. S., T. K. Tran, and B. S. Kim (2017) Potential of Saccharophagus degradans for production of polyhydroxyalkanoates using cellulose. Proc. Biochem. 57: 50–56.

    Article  CAS  Google Scholar 

  26. Jung, Y. H., H. K. Kim, H. M. Park, Y.-C. Park, K. Park, J.-H. Seo, and K. H. Kim (2015) Mimicking the Fenton reactioninduced wood decay by fungi for pretreatment of lignocellulose. Bioresour. Technol. 179: 467–472.

    Article  CAS  Google Scholar 

  27. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. National Renewable Energy Laboratory, Technical Report NREL/TP-510-42623, http://www.nrel.gov/docs/gen/fy08/42623.pdf.

    Google Scholar 

  28. Graat, P. C. and M. A. Somers (1996) Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra. Appl. Surf. Sci. 100: 36–40.

    Article  Google Scholar 

  29. Xiong, Z., S. Li, and Y. Xia (2016) Highly stable water-soluble magnetic nanoparticles synthesized through combined coprecipitation, surface-modification, and decomposition of a hybrid hydrogel. New J. Chem. 40: 9951–9957.

    Article  CAS  Google Scholar 

  30. Zhang, H., J. Li, W. Sun, Y. Hu, G. Zhang, M. Shen, and X. Shi (2014) Hyaluronic acid-modified magnetic iron oxide nanoparticles for MR imaging of surgically induced endometriosis model in rats. PLoS One 9: e94718.

    Article  Google Scholar 

  31. Cai, C. M., N. Nagane, R. Kumar, and C. E. Wyman (2014) Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem. 16: 3819–3829.

    Article  CAS  Google Scholar 

  32. Liu, L., J. Sun, C. Cai, S. Wang, H. Pei, and J. Zhang (2009) Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresour. Technol. 100: 5865–5871.

    Article  CAS  Google Scholar 

  33. Marcotullio, G., E. Krisanti, J. Giuntoli, and W. De Jong (2011) Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. Bioresour. Technol. 102: 5917–5923.

    Article  CAS  Google Scholar 

  34. Bobleter, O. (1994) Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19: 797–841.

    Article  CAS  Google Scholar 

  35. Sasaki, M., B. Kabyemela, R. Malaluan, S. Hirose, N. Takeda, T. Adschiri, and K. Arai (1998) Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluid. 13: 261–268.

    Article  CAS  Google Scholar 

  36. Mukherjee, A., M. J. Dumont, V. Raghavan (2015) Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenerg. 72: 143–183.

    Article  CAS  Google Scholar 

  37. Moon, S. A., B. K. Salunke, B. Alkotaini, E. Sathiyamoorthi, and B. S. Kim (2015) Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol. 9: 220–225.

    Article  Google Scholar 

  38. Salunke, B. K., S. S. Sawant, T. K. Kang, D. Y. Seo, Y. Cha, S. A. Moon, B. Alkotaini, E. Sathiyamoorthi, and B. S. Kim (2015) Potential of biosynthesized silver nanoparticles as nanocatalyst for enhanced degradation of cellulose by cellulose. J. Nanomater. 2015: 289410.

    Article  Google Scholar 

  39. Nadaf, N. Y. and S. S. Kanase (2016) Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab. J. Chem. http://dx.doi.org/10.1016/j.arabjc.2016.09.020.

    Google Scholar 

  40. Li, L., C. Zeng, L. Ai, and J. Jiang (2015) Synthesis of reduced graphene oxide-iron nanoparticles with superior enzyme mimetic activity for biosensing application. J. Alloy. Compd. 639: 470–477.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, H., Salunke, B.K., Iskandarani, B. et al. Improved degradation of lignocellulosic biomass pretreated by Fenton-like reaction using Fe3O4 magnetic nanoparticles. Biotechnol Bioproc E 22, 597–603 (2017). https://doi.org/10.1007/s12257-017-0225-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0225-x

Keywords

Navigation