Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 10A))

Abstract

Somatic embryogenesis (SE) has a great potential in the near future for mass multiplication and genetic improvement of several leguminous species. In the recent past, a significant progress has been made in the development of regeneration systems for various legumes, and many legumes are now amenable to regeneration via somatic embryogenesis. The purpose of this review is to focus on recent advances in the initiation and development of somatic embryos in various leguminous plants. Much emphasis has been given to identify the successful protocols for the establishment of an efficient somatic embryogenic system in legume species. It reveals that, in legumes, somatic embryogenesis can easily be achieved when young plant tissues are used as initial explants. 2,4-dichlorophenoxy-acetic acid (2,4-D) is widely used auxin for somatic embryogenesis in most of the leguminous species. Recently thidiazuron (TDZ) has been shown to induce high frequency direct somatic embryogenesis. Plant regeneration from somatic embryogenic tissue involves several steps. Firstly, the embryogenic tissue is developed from initial explant tissues, secondly, embryogenic tissue is allowed to proliferate into mature somatic embryos and thirdly somatic embryos germinate into plantlets. Although plants have been regenerated via somatic embryos from various legumes in the last two decades, low-frequency embryo induction, poor percentage of germination and conversion of somatic embryos into plants and somaclonal variations are the major obstacles limiting the exploitation of somatic embryogenic technology for biotechnological applications in legume improvement. The sequential and interactive action of many genes is clearly involved in the establishment of somatic embryos and plant regeneration. The precise role of these genes remains to be determined in most cases. Similarly, little is known of how regulatory genes function to specify major events. Many genes, e.g. calnexin-like homologues (early) and SNQ2-like genes (late), have been identified which express during somatic embryogenesis. In order to overcome these limitations, a systematic study of these patterns could help to identify various conditions such as the effect of carbohydrates, plant growth regulators, amino acids, media composition, explant age, biochemical markers and regulation of gene expression for fundamental understanding of somatic embryogenesis and the development of regeneration system for most legumes. It is our hope that as the technology develops further, it may become possible to produce large numbers of somatic embryos in bioreactors for use as artificial seeds to propagate elite or hybrid and genetically modified legume genotypes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed R, Gupta S D and De D N (1996) Somatic embryogenesis and plant regeneration from leaf derived callus of winged bean (Psophocarpus tetragonolobus L.). Plant Cell Rep., 15: 531–535.

    Article  CAS  Google Scholar 

  • Amberger A L, Palmer R G and Shoemaker R C (1992) Analysis of culture-induced variation in soybean. Crop Sci., 32: 1103–1108.

    Article  Google Scholar 

  • Ammirato P V (1983) Embryogenesis. In: Handbook of Plant Cell Culture, Vol. f (Eds Evans D A, Sharp W R, Ammirato P V and Yamada Y ), MacMillan, New York, pp. 82–123.

    Google Scholar 

  • Ammirato P V (1987) Organisational events during somatic embryogenesis. In: Plant Biology, Vol. 3, Plant Tissue and Cell Culture (Eds Green C E, Somers D A, Hackett W P and Biesboer D D ), Alan R. Liss, New York, pp. 57–81.

    Google Scholar 

  • Anandarajah K and McKersie B D (1990) Manipulating the desiccation tolerance and vigor of dry somatic embryos of Medicago sativa L. with sucrose, heat shock, and abscisic acid. Plant Cell Rep., 9: 451–455.

    Article  CAS  Google Scholar 

  • Anbazhagan V R and Ganapathi A (1999) Somatic embryogenesis in cell suspension cultures of pigonpea (Cajanus cajan). Plant Cell Tiss. Org. Cult., 56: 179–184.

    Article  Google Scholar 

  • Arcioni S and Mariotti D (1982) Tissue culture and plant regeneration in the forage legumes Onobrychis viciaefolia Scop., Coronilla varia and Lotus corniculatus L. In: Plant Tissue Culture, Vol. 11 (Ed Fujiwara A ), Maruzen, Tokyo, pp. 707–708.

    Google Scholar 

  • Arrillaga I, Tobolski S A and Merkle S A (1994) Advances in somatic embryogenesis and plant production of black locust. Plant Cell Rep., 13: 171–175.

    Article  CAS  Google Scholar 

  • Bailey M A, Boerma H R and Parrott W A (1993) Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell. Dev. Biol. Plant., 29: 102–108.

    Google Scholar 

  • Bajaj Y P S (1995) Somatic embryogenesis and its applications in crop improvement. In: Biotechnology in Agriculture and Forestry, Vol. 30, Somatic Embryogenesis and Synthetic Seed (Ed Bajaj Y P S ), Springer-Verlag, Berlin, pp. 105–125.

    Chapter  Google Scholar 

  • Bajaj Y P S, Singh H and Gosal S S (1980) Haploid embryogenesis in another culture of pigeonpea (Cajanus cajan L.). Theort. Appl. Genet., 58: 157–159.

    Article  Google Scholar 

  • Baker C M and Wetzstein H Y (1992) Somatic embryogenesis and plant regeneration from leaflets of peanut (Arachis hypogaea L.). Plant Cell Rep., 11: 71–75.

    Article  CAS  Google Scholar 

  • Baker C M and Wetzstein H Y (1994) Influence of auxin type and concentration on peanut somatic embryogenesis. Plant Cell Tiss. Org. Cult., 36: 361–368.

    CAS  Google Scholar 

  • Baker C M and Wetzstein H Y (1998) Leaflet development, induction time and medium influence somatic embryogenesis in peanut (Arachis hypogaea L.). Plant Cell Rep., 17: 925–929.

    Article  CAS  Google Scholar 

  • Baker C M and Wetzstein H Y (1995) Repetitive somatic embryogenesis in peanut cotyledon cultures by continual exposure to 2,4-D. Plant Cell Tiss. Org. Cult., 40: 249–254.

    Article  CAS  Google Scholar 

  • Baker C M, Burns J A and Wetzstein H Y (1994) Influence of photoperiod and medium formulation on peanut somatic embryogenesis. Plant Cell Rep., 13: 159–163.

    Google Scholar 

  • Baker C M, Durham R E, Burns J A, Parrott W A and Wetzstein H Y (1995) High frequency somatic embryo-

    Google Scholar 

  • genesis in peanut (Arachis hypogaea L.) using mature, dry seed. Plant Cell Rep.,15: 38–42.

    Google Scholar 

  • Barna K S and Wakhlu A K (1993) Somatic embryogenesis and plant regeneration from callus cultures of chickpea (Cicer arietinum L.). Plant Cell Rep., 12: 521–524.

    Article  CAS  Google Scholar 

  • Barna K S and Wakhlu A K (1995) Direct somatic embryogenesis and plantlet regeneration from immature leaflets in chickpea. In Vitro Cell. Dev. Biol. Plant., 31: 137–139.

    Google Scholar 

  • Barwale U B, Kerns H R and Widholm J M (1986) Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta, 167: 473–481.

    Article  CAS  Google Scholar 

  • Barwale U B and Widholm J M (1987) Somaclonal variation in plants regenerated from cultures of soybean. Plant Cell Rep.,6: 365–368.

    Google Scholar 

  • Bencheikh M and Gallais A (1996a) Somatic embryogenesis in pea (Pisum sativum L. and Pisum arvense L.) diallele analysis and genetic control. Euphytica, 90: 257–264.

    Article  Google Scholar 

  • Bencheikh M and Gallais A (1996b) Study of the variation in the somatic embryogenesis ability of some pea lines (Pisum sativum L. and Pisum arvense L.). Euphytica, 90: 251–256.

    Article  Google Scholar 

  • Beversadorf W D and Bingham E T (1977) Degrees of differentiation obtained in tissue cultures of Glycine species. Crop Sci., 17: 307–311.

    Article  Google Scholar 

  • Binachi S, Flament P and Datee Y (1988) Somatic embryogenesis and organogenesis in alfalfa: Genotype variations in regeneration ability. Agronomy, 8: 121–126.

    Google Scholar 

  • Bingham E T, McCoy T J and Walker K A (1988) Alfalfa tissue culture. In: Alfalfa and Alfalfa Improvement (Eds Hanson A A, Barnes D K and Hill Jr. R R ), Madison, WI: ASA-CSSA-SSA, pp. 903–929.

    Google Scholar 

  • Brown D C W and Atanassov A (1985) Role of genetic background in somatic embryogenesis in Medicago. Plant Cell Tiss. Org. Cult., 4: 111–222.

    Google Scholar 

  • Buchheim J A, Colburn S M and Ranch J P (1989) Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol., 89: 768–775.

    Google Scholar 

  • Buckley L G and Trigiano R N (1994) Changes in ovule protein profiles associated with somatic embryogenesis in Cercis canadensis (Redbud). Plant Cell Rep., 14: 27–30.

    Article  CAS  Google Scholar 

  • Carman J (1990). Embryogenic cells in plant tissue cultures: Occurrence and behaviour. In Vitro Cell. Dev. Biol. Plant.,26: 746–753.

    Google Scholar 

  • Chen T H H and Marowitch J (1987) Screening of Medicago jalcata germplasm for in vitro regeneration. J Plant Physiol., 128: 271–277.

    Article  Google Scholar 

  • Chen T H H, Marowitch J and Thompson B G (1987) Genotype effects on somatic embryogenesis and plant regeneration from callus cultures of alfalfa. Plant Cell Tiss. Org. Cult., 8: 73–81.

    Google Scholar 

  • Chengalrayan K, Mhaske V B and Hazra S (1995) In vitro regulation of morphogenesis in peanut (Arachis hypogaea L.). Plant Sci., 110: 259–268.

    CAS  Google Scholar 

  • Chengalrayan K, Mhaske V B and Hazra S (1997) High frequency conversion of abnormal peanut somatic embryos. Plant Cell Rep., 16: 783–786.

    Article  CAS  Google Scholar 

  • Chengalrayan K, Mhaske V B and Hazra S (1998) Genotypic control of peanut somatic embryogenesis. Plant Cell Rep., 17: 522–525.

    Article  CAS  Google Scholar 

  • Chengalrayan K, Sathaye S S and Hazra S (1994) Somatic embryogenesis from mature zygotic embryo-derived leaflets of peanut (Arachis hypogaea L.). Plant Cell Rep., 13: 578–581.

    Article  CAS  Google Scholar 

  • Cho M J, Widholm J M and Vodkin L 0 (1995) Cassettes for seed specific expression tested in transformed embryogenic cultures of soybean. Plant Mol. Biol. Rep., 13: 255–269.

    Article  CAS  Google Scholar 

  • Christianson M L, Warnick D A and Carlson P S (1983) A morphogenetically competent soybean suspension culture. Science, 222: 632–634.

    Google Scholar 

  • Christou P and Yang N S (1989) Developmental aspects of soybean (Glycine max) somatic embryogenesis. Ann. Bot., 64: 225–234.

    CAS  Google Scholar 

  • Collins G B and Phillips G C (1982) In vitro tissue culture and plant regeneration in Trifolium pratense L. In: Variability in Plants Regenerated from Tissue Culture (Eds Earle E D and Demarly Y), Praeger, New York, pp. 22–34.

    Google Scholar 

  • Conger B V, Nanning G E, Gray D J and McDaniel J K (1983) Direct somatic embryogenesis from mesophyll cells of orchard grass. Science, 221: 850–851.

    Article  PubMed  CAS  Google Scholar 

  • Curir P, Ruffoni B, Massabo F and Damiano (1990) Induction of somatic embryogenesis in Genista monosperma Lam. Acta Hort., 280: 113–116.

    Google Scholar 

  • Dahmer M L, Hildebrand D F and Collins G B (1992) Comparative protein accumulation patterns in soybean somatic and zygotic embryos. In Vitro Cell Dev. Biol. Plant., 28: 106–111.

    Google Scholar 

  • Dan Y and Reichert N A (1998) Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell. Dev. Biol. Plant., 34: 14–21.

    Google Scholar 

  • Das A B, Rout G R and Das P (1995) In vitro somatic embryogenesis from callus culture of the timber yielding tree Hardwickia binata Roxb. Plant Cell Rep., 15: 147–149.

    CAS  Google Scholar 

  • Das P, Samantaray S, Roberts A V and Rout G R (1997) In vitro somatic embryogenesis of Dalbergia sissoo Roxb. — a multipurpose timber yielding tree. Plant Cell Rep., 16: 578–582.

    CAS  Google Scholar 

  • Das Neves L O, Duque S R L, Almeida J S and Fevereiro S (1999) Repetitive somatic embryogenesis in Medicago truncatula sp. Narbonensis and M truncatula Gaertn cv. Jemalong. Plant Cell Rep., 18: 398–405.

    Article  Google Scholar 

  • Denchev P, Velcheva M and Atenssov A (1991) A new approach to direct somatic embryogenesis in Medicago. Plant Cell Rep., 10: 338–341.

    Google Scholar 

  • Dhanalakshmi S and Lakshmanan K K (1992) In vitro somatic embryogenesis and plant regeneration in Clitoria ternatea. J Exp. Bot., 43: 213–219.

    Google Scholar 

  • Dodeman V L, Ducreux G and Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot., 48: 1493–1509.

    CAS  Google Scholar 

  • Dos Santos A V P, Cutter E G and Davey M R (1983) Origin and development of somatic embryos in Medicago sativa (alfalfa). Protoplasma, 117: 107–115.

    Article  Google Scholar 

  • Durham R E and Parrott W A (1992) Repetitive somatic embryogenesis in liquid cultures of peanut. Plant Cell Rep., 11: 122–125.

    Article  Google Scholar 

  • Eapen S and George L (1990) Ontogeny of somatic embryos of Vigna aconitifolia, Vigna mungo and Vigna radiata. Ann. Bot., 66: 219–226.

    Google Scholar 

  • Eapen S and George L (1993a) Somatic embryogenesis in peanut: Influence of growth regulators and sugars. Plant Cell Tiss. Org. Cult, 35: 151–156.

    Article  CAS  Google Scholar 

  • Eapen S and George L (1993b) Plant regeneration from leaf discs of peanut and pigeonpea: Influence of benzyladenine, indoleacetic acid and indole acetic acid-amino conjugates. Plant Cell Tiss. Org. Cult., 35: 223–227.

    Article  CAS  Google Scholar 

  • Eapen S and George L (1994) Somatic embryogenesis in Cicer arietinum L.: Influence of genotype and auxins. Biol. Plant., 36: 343–349.

    Article  Google Scholar 

  • Eapen S, George L and Rao P S (1993) Plant regeneration through somatic embryogenesis in peanut (Arachis hypogaea L.). Biol. Plant., 35: 499–504.

    Article  Google Scholar 

  • Emons A M C (1994) Somatic embryogenesis: Cell biological aspects. Act. Bot. Neerl., 43: 1–14.

    Google Scholar 

  • Erdelska O and Vidovencova Z (1992) The polyembryonie character of somatic embryogenesis. In: Regulation of Plant Somatic Embryogenesis (Eds Griga M and Tejklova E ), VUTPL, Sumperk, CSFR, pp. 78–79.

    Google Scholar 

  • Finer J J (1988) Apical proliferation of embryogenic tissue of soybean (Glycine max (L.) Merril). Plant Cell Rep., 7: 238–241.

    Article  Google Scholar 

  • Finer J J and McMullen M D (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev. Biol. Plant, 27: 175–182.

    Google Scholar 

  • Finer J J and Nagasawa A (1988) Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merrill]. Plant Cell Tiss. Org. Cult., 15: 125–136.

    Article  CAS  Google Scholar 

  • Fowler M R, Ong L M, Russinova E, Atanassov A I, Scott N W, SlaterA and Elliott M C (1998) Early changes in gene expression during direct somatic embryogenesis in alfalfa revealed by RAP-PCR. J. Exp. Bot., 49: 249–253.

    CAS  Google Scholar 

  • Fuentes S I, Suarez R, Villegas T, Acero L C and Hernendez G (1993) Embryogenic response of Mexican alfalfa (Medicago sativa) varieties. Plant Cell Tiss. Org. Cult., 34: 299–302.

    Article  Google Scholar 

  • Fujii J A, Slade D, Olsen R, Ruzin S E and Redenbaugh K (1990) Alfalfa somati embryo maturation and conversion into plants. Plant Sci., 72: 93–100.

    Article  CAS  Google Scholar 

  • Gamborg O L, Davis B P and Stahlhut R W (1983) Somatic embryogenesis in cell cultures of Glycine species. Plant Cell Rep., 2: 209–212.

    Article  Google Scholar 

  • Garg L, Bhandari N N, Vijaya R and Bhojwani S S (1996) Somatic embryogenesis and regeneration of triploid plants in endosperm cultures of Acacia nilotica. Plant Cell Rep., 15: 855–858.

    Article  CAS  Google Scholar 

  • Geetha N (1995) In vitro plant regeneration and selection for salt and drought tolerance in Vigna mungo (L.) Hepper. Ph.D. thesis, Bharathidasan University, Tiruchirappalli, India.

    Google Scholar 

  • Geetha N, Venkatachalam P, Prakash V and Lakshmi Sita G (1998) High frequency induction of multiple shoots and plant regeneration from seedling explants of pigeonpea (Cajanus cajan L.). Curr. Sci., 75: 1036–1041.

    CAS  Google Scholar 

  • Geetha N, Venkatachalam P and Rao G R (1997) Somatic embryogenesis and plant regeneration from cell suspension cultures of blackgram [Vigna mungo (L.) Hepper]. Physiol. Mol. Biol. Plants, 3: 25–30.

    Google Scholar 

  • Geneve R L and Kester S T (1990) The initiation of somatic embryos and adventitious roots from developing zygotic embryos expiants of Cercis canadensis L. cultured in vitro. Plant Cell Tiss. Org. Cult., 22: 71–76.

    CAS  Google Scholar 

  • Genga A and Allavena A (1991) Factors affecting morphogenesis from immature cotyledons of Phaseolus coccineus L. Plant Cell Tiss. Org. Cult., 27: 189–196.

    Article  CAS  Google Scholar 

  • George L and Eapen S (1993) Influence of genotype and explant source on somatic embryogenesis in peanut. Oleagineux, 48: 361–363.

    Google Scholar 

  • George L and Eapen S (1994) Organogenesis and embryogenesis from diverse expiants in pigeonpea (Cajanus cajan L.). Plant Cell Rep., 13: 417–420.

    Article  CAS  Google Scholar 

  • Gharyal P K and Maheswari S C (1983) In vitro differentiation of somatic embryos in a leguminous tree, Albizia lebbeck L. Naturwiss., 68: 379–380.

    Google Scholar 

  • Ghazi T D, Cheema H K and Nabors M W (1986) Somatic embryogenesis and plant regeneration from embryo-genic callus of soybean, Glycine max L. Plant Cell Rep., 5: 452–456.

    Article  CAS  Google Scholar 

  • Gill R and Saxena P K (1992) Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogaea L.): Promotive role of thidiazuron. Can. J Bot., 70: 1186–1192.

    Article  CAS  Google Scholar 

  • Greinwald R and Czygan F C (1991) Regeneration of plants from callus cultures of Chamaecytisus purpureus and C. austriacus (Leguminosae). Bot. Acta, 104: 64–67.

    CAS  Google Scholar 

  • Griga M (1990) The study of in vitro regeneration systems in pea, horse bean and soybean, Ph.D. thesis, Masaryk University, Brno, Czech.

    Google Scholar 

  • Griga M (1993) Some factors affecting somatic embryogenesis efficiency in soybean [Glycine max (L.) Merr]. Biol. Plant., 35: 179–189.

    Article  CAS  Google Scholar 

  • Griga M (1998) Direct somatic embryogenesis from shoot apical meristems of pea and thidiazuron induced high conversion rate of somatic embryos. Biol. Plant., 41: 481–495.

    Article  Google Scholar 

  • Griga M (1999) Somatic embryogenesis in grain legumes. Adv. Regulat. Plant Growth Dev., 1: 233–250.

    Google Scholar 

  • Griga M and Letal J (1995) Somaclonal variation study of pea (Pisum sativum L.). In: Recent Advances in Plant Biotechnology, Inst. Plant Genet., Nitra, pp. 130–135.

    Google Scholar 

  • Griga M and Letal J (1996) Improved protocol for pea (Pisum sativum L.) somatic embryogenesis and field performance of pea soma clones. In: Second Asia—Pacific Conf. Plant Cell Tiss. Cult., Beijing, China, p. 4.

    Google Scholar 

  • Griga M and Stejskal J (1994) Auxin and sucrose effects on maturation of soybean somatic embryos from long-term repetitive culture. Biol. Plant.,36: 81.

    Google Scholar 

  • Griga M, Stejskal J and Beber K (1995) Analysis of tissue culture-derived variation in pea (Pisum sativum L.) — preliminary results. Euphytica, 85: 335–339.

    Article  Google Scholar 

  • Gupta S D, Ahmed R and De D N (1997) Direct somatic embryogenesis and plantlet regeneration from seedling leaves of winged bean, Psophocarpus tetragonolobus (L.) DC. Plant Cell Rep., 16: 628–631.

    Article  Google Scholar 

  • Hadi M Z, McMullen M A and Finer J J (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep., 15: 500–505.

    Article  CAS  Google Scholar 

  • Hammatt N and Davey M R (1987) Somatic embryogenesis and plant regeneration from cultured zygotic embryos of soybean (Glycine max (L.) Merr). J. Plant Physiol., 128: 219–226.

    Article  Google Scholar 

  • Hartweck L M, Lazzeri P A, Cui D, Collins G B and Williams E G (1988) Auxin-orientation effects on somatic embryogenesis from immature soybean cotyledons. In Vitro Cell. Dev. Biol. Plant, 24: 821–828.

    Article  CAS  Google Scholar 

  • Hazra S, Sathaye S S and Mascarenhas A F (1989) Direct somatic embryogenesis in peanut (Arachis hypogaea L.). Bio/Technology, 7: 949–951.

    Article  Google Scholar 

  • Heath L C, Chin S, Spencer D and Higgins T J V (1993) In vitro regeneration of commercial cultivars of subterranean clover. Plant Cell Tiss. Org. Cult.,35: 43–48.

    Google Scholar 

  • Hepher A, Boulter M E, Harris N and Nelson R S (1988) Development of a superficial meristem during somatic embryogenesis from immature cotyledons of soybean (Glycine max L.). Ann. Bot., 62: 513–519.

    Google Scholar 

  • Hernandez-Fernandez M M and Christie B R (1989) Direct somatic embryogenesis in alfalfa (Medicago sativa L.) somatic embryos, leaflets and mature seeds. Plant Sci., 109: 191–198.

    Google Scholar 

  • Hildebrand D F Adams T R, Dahmer M L, Williams E G and Collins G B (1989) Analysis of lipid composition and morphological characteristics in soybean regenerants. Plant Cell Rep.,7: 701–703.

    Google Scholar 

  • Hinchee M A W, Connor-Ward D V, Newell C A, McDonnell R E, Sato S J, Gasser C S, Fishhoff D A, Re D B, Fraley R T and Horsch R B (1988) Production of transgenic soybean plants using Agrobacterium-mediated gene transfer. Bio/Technology, 6: 915–922.

    Google Scholar 

  • Horbowicz M, Obendorf R L, McKersie B D and Viands D R (1995) Soluble saccharides and cyclitols in alfalfa

    Google Scholar 

  • (Medicago sativa L.) somatic embryos, leaflets and mature seeds. Plant Sci.,109: 191–198.

    Google Scholar 

  • Jacobsen H J (1991) Somatic embryogenesis in seed legumes: The possible role of soluble auxin receptors. Israel J. Bot., 40: 139–143.

    CAS  Google Scholar 

  • Jacobsen H J and Kysely W (1984) Induction of somatic embryos in pea, Pisum sativum L. Plant Cell Tiss. Org. Cult., 3: 319–324.

    Article  CAS  Google Scholar 

  • Jacques L C, Marche Y L and Deunff Y L (1995) Effects of auxin, cytokinin, carbohydrates and aminoacids on somatic embryogenesis induction from shoot apices of pea. Plant Cell Tiss. Org. Cult., 4: 267–275.

    Google Scholar 

  • Janick J (1993) Agricultural uses of somatic embryos. Act. Hort., 336: 207–215.

    Google Scholar 

  • Jin H, Hartman G L, Huang Y H, Nickell C D and Widholm J M (1996) Regeneration of soybean plants from embryogenic suspension cultures treated with toxic culture filtrate of Fusarium solani and screening of regenerants for resistance. Phytopathology, 86: 714–718.

    Google Scholar 

  • Kar S, Basu D, Das S, Ramakrishnan N A, Mukherjee R, Nayak P and Sen S K (1997) Expression of CryIA(C) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Trans. Res., 6: 177–185.

    Article  CAS  Google Scholar 

  • Kerns H R, Barwale U B, Meyer M M Jr. and Widholm J M (1986) Correlation of cotyledonary node shoot proliferation and somatic embryoid development in suspension cultures of soybean [Glycine max (L.) Merr.]. Plant Cell Rep., 5: 140–143.

    Article  Google Scholar 

  • Keyes G J, Collins G B and Taylor N L (1980) Genetic variations in tissue cultures of red clover. Theort. Appl. Genet., 58: 265–271.

    Article  Google Scholar 

  • Kielly G A and Bowley S R (1992) Genetic control of somatic embryogenesis in alfalfa. Genome, 35: 474–477.

    Article  Google Scholar 

  • Komatsuda T (1990) Ability of soybean (Glycine max (L.) Merr.) genotypes to produce somatic embryos on a medium containing a low concentration of sucrose. Jpn. J Breed., 40: 371–375.

    Google Scholar 

  • Komatsuda T, Kanebo K and Oka S (1991) Genotype X sucrose interactions for somatic embryogenesis in soybean. Crop Sci., 31: 333–337.

    Article  CAS  Google Scholar 

  • Komatsuda T and Ko S W (1990) Screening of soybean [Glycine max (L.) Merrill] genotype for somatic embryo production from immature embryos. Jpn. J. Breed., 40: 249–251.

    Google Scholar 

  • Komatsuda T, Lee W and Oka S (1992) Maturation and germination of somatic embryos as affected by sucrose and plant growth regulators in soybean, Glycine gracilis Skvortz and Glycine max (L.) Merr. Plant Cell Tiss. Org. Cult., 28: 103–113.

    Article  CAS  Google Scholar 

  • Komatsuda T and Ohyama K (1988) Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean, Glycine max L. Theort. Appl. Genet., 75: 695–700.

    Google Scholar 

  • Krochko J E, Pramanik S K and Bewley J D (1992) Contrasting storage protein synthesis and mRNA accumulation during development of zygotic and somatic embryos of alfalfa (Medicago sativa L.). Plant Physiol., 99: 46–53.

    Article  PubMed  CAS  Google Scholar 

  • Kuklin A 1, Denchev P D, Atanassov A 1 and Scragg A H (1994) Alfalfa embryo production in airlift vessels via direct somatic embryogenesis. Plant Cell Tiss. Org. Cult., 38: 19–23.

    Article  Google Scholar 

  • Kulothungan S, Ganapathi A, Shajahan A and Kathiravan K (1995) Somatic embryogenesis in cell suspension culture of cowpea (Vigna unguiculata (L.) Walp). Israel J. Plant Sci., 43: 385–390.

    Google Scholar 

  • Kumar A S, Gamborg O L and Nabors M W (1988) Plant regeneration from cell suspension cultures of Vigna aconitifolia. Plant Cell Rep., 7: 138–144.

    Article  CAS  Google Scholar 

  • Kumar V D, Kirti P B, Sachan J K S and Chopra V L (1994) Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep., 13: 468–472.

    Article  CAS  Google Scholar 

  • Kumar V, Kirti P B, Sachan J K S and Chopra V L (1995) Picloram induced somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Sci., 109: 207–213.

    Article  Google Scholar 

  • Kysely W and Jacobsen H J (1990) Somatic embryogenesis from pea embryos and shoot apices. Plant Cell Tiss. Org. Cult., 20: 7–14.

    Article  CAS  Google Scholar 

  • Kysely W, Myers J R, Lazzeri P A, Collins G B and Jacobsen H J (1987) Plant regeneration via somatic embryogenesis in pea (Pisum sativum L.). Plant Cell Rep., 6: 305–308.

    Article  CAS  Google Scholar 

  • Lai F and McKersie B D (1994) Regulation of starch and protein accumulation in alfalfa (Medicago sativa L.) somatic embryos. Plant Sci., 100: 211–219.

    Article  CAS  Google Scholar 

  • Lakshmanan P and Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol., 2: 136–148.

    Article  CAS  Google Scholar 

  • Lakshmi Sita G (1999) Somatic embryogenesis in rosewood and other Indian tree legumes. In: Somatic Embryogenesis in Woody Plants, Vol. 5 (Eds Jain S M, Gupta P K and Newton R J ), Kluwer Academic Publishers, The Netherlands, pp. 95–112.

    Chapter  Google Scholar 

  • Lazzeri P A, Hildebrand D F and Collins G B (1985) A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol. Biol. Rep., 3: 160–167.

    Article  Google Scholar 

  • Lazzeri P A, Hildebrand D F and Collins G B (1987a) Soybean somatic embryogenesis: Effects of hormones and culture manipulations. Plant Mol. Biol. Rep., 10: 197–208.

    CAS  Google Scholar 

  • Lazzeri P A, Hildebrand D F and Collins G B (1987b) Soybean somatic embryogenesis: Effects of nutritional, physical and chemical factors. Plant Mol. Biol. Rep., 10: 209–220.

    CAS  Google Scholar 

  • Lazzeri P A, Hildebrand D F, Sunega J, Williams E G and Collins G B (1988) Soybean somatic embryogenesis: Interactions between sucrose and auxin. Plant Cell Rep., 7: 517–520.

    Article  CAS  Google Scholar 

  • Lecouteux C G, Lai F and McKersie B D (1993) Maturation of alfalfa (Medicago sativa L.) somatic embryos by abscisic acid, sucrose and chilling stress. Plant Sci., 94: 207–213.

    Article  CAS  Google Scholar 

  • Lehminger-Mertens R and Jacobsen H J (1989) Plant regeneration from pea protoplasts via somatic embryogenesis. Plant Cell Rep., 8: 379–382.

    Article  Google Scholar 

  • Levi A and Sink K C (1990) Differential aspects of sucrose, glucose and fructose during somatic embryogenesis in Asparagus. J. Plant Physiol., 137: 184–189.

    Article  CAS  Google Scholar 

  • Li X and Demarly Y (1996) Somatic embryogenesis and plant regeneration in Medicago suffruticosa. Plant Cell Tiss. Org. Cult., 44: 79–81.

    Article  CAS  Google Scholar 

  • Li B J, Langridge W H R and Szalay A A (1985) Somatic embryogenesis and plant regeneration in the soybean, Glycine max L. Plant Cell Rep., 4: 344–347.

    Article  CAS  Google Scholar 

  • Li J and Grabau E A (1996) Comparison of somatic embryogenesis and embryo conversion in commercial soybean cultivars. Plant Cell Tiss. Org. Cult., 44: 87–89.

    Article  Google Scholar 

  • Lippmann B and Lippmann G (1984) Induction of somatic embryos in cotyledonary tissue of soybean, Glycine max L. Merr. Plant Cell Rep., 3: 215–218.

    Article  CAS  Google Scholar 

  • Little E L, Magbanua Z V and Parrott W A (2000) A protocol for repetitive somatic embryogenesis from mature peanut epicotyls. Plant Cell Rep., 19: 351–357.

    Article  CAS  Google Scholar 

  • Liu W, Morre P J and Collins G B (1992) Somatic embryogenesis in soybean via somatic embryo cycling. In Vitro Cell. Dev. Biol. Plant, 28: 153–160.

    Google Scholar 

  • Liu W, Torisky R S, McAllister K P, Avdiushko S, Hildebrand D and Collins G B (1996) Somatic embryo cycling: evaluation of a novel transformation and assay system for seed specific gene expression in soybean. Plant Cell Tiss. Org. Cult., 47: 33–42.

    Article  CAS  Google Scholar 

  • Loiseau J, Marche C and Deunff Y L (1995) Effect of auxins, cytokinins, carbohydrates and amino acids on somatic embryogenesis from shoot apices of pea. Plant Cell Tiss. Org. Cult., 41: 267–275.

    Article  CAS  Google Scholar 

  • Luo J P and Jia J F (1998) Plant regeneration from callus protoplasts of the forage legume Astrafalus adsurgens Pall. Plant Cell Rep., 17: 313–317.

    Article  CAS  Google Scholar 

  • Lupotto E (1983) Propagation of an embryogenic culture of Medicago saliva L. Pflanzenphysiol., 111: 95–104. Lupotto E (1986) The use of single somatic embryo culture in propagating and regenerating lucerne (Medicago sativa L.). Ann. Bot., 57: 19–24.

    Google Scholar 

  • Maheswaran G and Williams E G (1984) Direct somatic embryoid formation on immature embryos of Trifolium repens, T. pratense and Medicago sativa and rapid clonal propagation of T repens. Ann. Bot., 54: 201–211.

    Google Scholar 

  • Maheswaran G and Williams E G (1985) Origin and development of somatic embryoids formed directly on immature embryos of Trifolium repens in vitro. Ann. Bot., 56: 618–630.

    Google Scholar 

  • Maheswaran G and Williams E G (1986) Direct secondary somatic embryogenesis from immature sexual embryos of Trifolium repens cultured in vitro. Ann. Bot., 57: 109–117.

    Google Scholar 

  • Maheswaran G and Williams E G (1987) Uniformity of plants regenerated by direct somatic embryogenesis from zygotic embryos of Trifolium repens. Ann. Bot., 59: 93–97.

    CAS  Google Scholar 

  • Malik K A and Saxena P K (1992) Somatic embryogenesis and shoot regeneration from intact seedlings of Phaseolus acutifolius, P. aureus (L.) Wilczek, P coccineus and P. wrightii L. Plant Cell Rep., 11: 163–168.

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Reena M J T, Sastri D C and Moss J P (1996) Somatic embryogenesis in pigeonpea, Cajanus cajan L. Indian J Exp. Biol., 34: 282–284.

    Google Scholar 

  • McCabe D E, Swain W F, Martinell B J and Christou P (1988) Stable transformation of soybean (Glycine max L.) by particle acceleration. Bio/Technology, 6: 923–926.

    Article  Google Scholar 

  • McKently A H (1991) Direct somatic embryogenesis from axes of mature peanut embryos. In Vitro Cell. Dev. Biol. Plant, 27: 197–200.

    Google Scholar 

  • McKently A H (1995) Effect of genotype on somatic embryogenesis from axes of mature peanut embryos. Plant Cell Tiss. Org. Cult., 42: 251–254.

    Article  Google Scholar 

  • McLean N L and Nowak J (1998) Inheritance of somatic embryogenesis in red clover (Trifolium pratense L.). Theort. Appl. Genet., 97: 557–562.

    Article  Google Scholar 

  • Meijer E G M and Brown D C W (1987) Role of exogenous reduced nitrogen and sucrose in rapid high frequency somatic embryogenesis in Medicago sativa. Plant Cell Tiss. Org. Cult., 10: 11–20.

    Article  CAS  Google Scholar 

  • Merkle S A, Parrott W A and Flinn B S (1995) Morphogenic aspects of somatic embryogenesis. In: In Vitro Embryogenesis in Plants (Ed Thorpe T A), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 155–203.

    Google Scholar 

  • Meurer C A, Dinkins R D and Collins G B (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep., 18: 180–186.

    Article  CAS  Google Scholar 

  • Mhaske V B Chengalrayan K and Hazra S (1998) Influence of osmotica and abscisic acid on triglyceride accumulation in peanut embryos. Plant Cell Rep.,17: 742–746.

    Google Scholar 

  • Mhaske V B and Hazra S (1994) Appearance of storage lipids (triglycerides) in somatic embryos of peanut (Arachis hypogaea L.). In Vitro Cell Dev. Biol. Plant, 30: 113–116.

    Article  Google Scholar 

  • Mitten D H, Sato S J and Skokut T A (1984) In vitro regenerative potential of alfalfa germplasm sources. Crop Sci., 24: 943–945.

    Google Scholar 

  • Murthy B N S, Murch S J and Saxena P K (1995) Thidiazuron induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea L.): Endogenous growth regulator levels and significance of cotyledons. Physiol. Plant., 94: 268–276.

    Article  CAS  Google Scholar 

  • Murthy B N S and Saxena P K (1994) Somatic embryogenesis in peanut (Arachis hypogaea L.): Stimulation of direct differentiation of somatic embryos by forchlorfenuron (CPPU). Plant Cell Rep., 14: 145–150.

    Article  CAS  Google Scholar 

  • Murthy B N S, Victor J, Singh R P, Fletcher R A and Saxena P K (1996) In vitro regeneration of chickpea (Cicer arietinum L.): Stimulation of direct organogenesis and somatic embryogenesis by thidiazuron. Plant Growth Reg.,19: 233–240.

    Google Scholar 

  • Nadolska-Orezyk A (1992) Somatic embryogenesis of agriculturally important lupin species (Lupinus angustifolius, L. albus, L. mutabilis), Plant Cell Tiss. Org. Cult., 28: 19–25.

    Article  Google Scholar 

  • Nagarajan P, McKenzie J S and Walton P D (1986) Embryogenesis and plant regeneration of Medicago species in tissue culture. Plant Cell Rep., 5: 77–80.

    Article  Google Scholar 

  • Nagarajan P and Walton P D (1987) A comparison of somatic chromosomal instability in tissue culture regenerants from Medicago media pers. Plant Cell Rep.,6: 109–113.

    Google Scholar 

  • Ninkovic S, Miljus-Djukic J and Mirjana N (1995) Genetic transformation of alfalfa somatic embryos and their propagation through repetitive somatic embryogenesis. Plant Cell Tiss. Org. Cult., 42: 255–260.

    Article  CAS  Google Scholar 

  • Nolan K E, Rose R J and Gorst J R (1989) Regeneration of Medicago truncatula from tissue culture: Increased

    Google Scholar 

  • somatic embryogenesis using explants from regenerated plants. Plant Cell Rep.,8: 278–281.

    Google Scholar 

  • Novak M, Griga M and Tejklova E (1987) Induction of somatic embryos from immature zygotic embryos of Glycine max (L.) Merr. In Vitro Sci. Age. Bohem., 19: 233–241.

    Google Scholar 

  • Ozean S, Barghchi M, Firek S and Draper J (1993) Efficient adventitious shoot regeneration and somatic embryogenesis in pea. Plant Cell Tiss. Org. Cult., 34: 271–277.

    Article  Google Scholar 

  • Ozias-Akins P (1989) Plant regeneration from immature embryos of peanut (Archis hypogaea L.). Plant Cell Rep., 8: 217–218.

    Article  Google Scholar 

  • Ozias-Akins P, Anderson W F and Holbrook C C (1992a) Somatic embryogenesis in Arachis hypogaea L.: genotype comparison. Plant Sci., 83: 103–111.

    Article  Google Scholar 

  • Ozias-Akins P, Singsit C and Branch W B (1992b) Interspecific hybrid inviability in crosses of Arachis hypogaea X A. stenosperma can be overcome by in vitro embryo maturation or somatic embryogenesis. J. Plant Physiol., 140: 207–217.

    Article  CAS  Google Scholar 

  • Padmaja G, Reddy L R and Reddy G M (1995) Plant regeneration from synthetic seeds of groundnut, Arachis hypogaea L. Indian J Exp. Biol., 33: 967–971.

    Google Scholar 

  • Parrott W A (1991) Auxin-stimulated somatic embryogenesis from immature cotyledons of white clover. Plant Cell Rep., 10: 17–21.

    Article  CAS  Google Scholar 

  • Parrott W A, All J N, Adang M J, Bailey M A, Boerma H R and Stewart Jr C N (1994) Recovery and evaluation of soybean (Glycine max [L.] Merr.) plants transgenic for a Bacillus thuringiensis var. Kurstaki insecticidal gene. In Vitro Cell. Dev. Biol. Plant, 30: 144–149.

    Google Scholar 

  • Parrott W A and Bailey M A (1993) Characterization of recurrent somatic embryogenesis of alfalfa on auxin-free medium. Plant Cell Tiss. Org. Cult., 32: 69–76.

    Article  CAS  Google Scholar 

  • Parrott W A, Dryden G, Vogt S, Hilderbrand D F, Collins G B and Williams E G (1988) Optimisation of somatic

    Google Scholar 

  • embryogenesis and embryo germination in soybean. In Vitro Cell. Dev. Biol. Plant,24: 817–820.

    Google Scholar 

  • Parrott W A, Williams E G, Hildbrand D F and Collins G B (1989) Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tiss. Org. Cult., 16: 15–21.

    Article  Google Scholar 

  • Parrott W A, Durham R E and Bailey M A (1995) Somatic embryogenesis in legumes. In: Biotechnology in Agriculture and Forestry, Vol. 31, Somatic embryogenesis and synthetic seed II (Ed Bajaj Y P S ), Springer-Verlag, Berlin, pp. 199–227.

    Chapter  Google Scholar 

  • Patel D B, Barve D M, Nagar N and Mehta A R (1994) Regeneration of pigeonpea (Cajanus cajan L.) through somatic embryogenesis. Indian J. Exp. Biol., 32: 740–744.

    CAS  Google Scholar 

  • Phillips G C and Collins G B (1981) Induction and development of somatic embryos from cell suspension cultures of soybean. Plant Cell Tiss. Org. Cult., 1: 123–129.

    Article  CAS  Google Scholar 

  • Poulsen G B, Frugis G, Albrechtsen M and Mariotti D (1996) Synthesis of extracellular proteins in embryogenic and non-embryogenic cell cultures of alfalfa. Plant Cell Tiss. Org. Cult., 44: 257–260.

    Article  CAS  Google Scholar 

  • Quesenberry K H and Smith R R (1993) Recurrent selection for plant regeneration from red clover tissue culture. Crop Sci., 33: 585–589.

    Article  Google Scholar 

  • Radionenko M A, Kuchuk A N, Khvedynich O A and GlebaYY (1994) Direct somatic embryogenesis and plant regeneration from protoplast of red clover (Trifolium pratense L.). Plant Sci., 97: 75–81.

    Article  Google Scholar 

  • Rajasekaran K and Pellow J W (1997) Somatic embryogenesis from cultured epicotyls and primary leaves of soybean (Glycine max L.). In Vitro Cell. Dev. Biol. Plant, 33: 88–91.

    Google Scholar 

  • Ramana R V, Venu C H, Jayasree T and Sadanandam A (1996) Direct somatic embryogenesis and transformation in Cicer arietinum L. Indian J. Exp. Biol., 34: 716–718.

    PubMed  CAS  Google Scholar 

  • Ramdev Reddy L and Reddy G M (1993) Factors affecting somatic embryogenesis and plant regeneration in groundnut, Arachis hypogaea L. Indian J. Exp. Biol., 31: 57–60.

    Google Scholar 

  • Ranch J P, Oglesby L and Zielinski A C (1985) Plant regeneration from embryo-derived tissue cultures of soybean by somatic embryogenesis. In Vitro Cell. Dev. Biol. Plant, 21: 653–657.

    Google Scholar 

  • Rani A S and Reddy G M (1996) Induction of somatic embryos from young leaflets of cultivated and wild species of groundnut. Indian J. Exp. Biol., 34: 569–571.

    CAS  Google Scholar 

  • Rao B G and Chopra V L (1989) Regeneration in chickpea (Cicer arietinum L.) through somatic embryogenesis. J. Plant Physiol., 134: 647–638.

    Article  Google Scholar 

  • Rao M M and Lakshmi Sita G (1996) Direct somatic embryogenesis from immature embryos of rosewood (Dalbergia latefolia Roxb.). Plant Cell Rep., 15: 355–359.

    Article  CAS  Google Scholar 

  • Reinert J (1958) Untersuchungen uber die morphogenese an gewbakulturen. Ber. Dtsch. Bot. Ges., 71: 15.

    Google Scholar 

  • Reisch B and Bingham E T (1980) The genetic control of bud formation from callus culture of diploid alfalfa. Plant Sci. Lett., 20: 71–77.

    Article  Google Scholar 

  • Rey H Y, Scocchi A M, Gonzalez A M and Mroginski L A (2000) Plant regeneration in Arachis pintoi (Leguminosae) through leaf culture. Plant Cell Rep., 19: 856–862.

    Article  CAS  Google Scholar 

  • Rout G R, Samantaray S and Das P (1995a) Effect of growth regulators and culture environment on somatic embryogenesis of Acacia catechu Willd. Israel J. Plant Sci., 43: 263–269.

    Google Scholar 

  • Rout G R, Samantaray S and Das P (1995b) Somatic embryogenesis and plant regeneration from callus cultures of Acacia catechu — a multipurpose leguminous tree. Plant Cell Tiss. Org. Cult., 42: 283–285.

    Article  CAS  Google Scholar 

  • Rybczynski J J (1997) Plant regeneration from highly embryogenic callus, cell suspension and protoplast cultures of Trifolium fragiferum. Plant Cell Tiss. Org. Cult., 51: 159–170.

    Article  CAS  Google Scholar 

  • Sagare A P, Suhasini K and Krishnamurthy K V (1993) Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep., 12: 521–524.

    Google Scholar 

  • Sagare A P, Suhasini K and Krishnamurthy K V (1995) Histology of somatic embryo initiation and development in chickpea (Cicer arietinum L.). Plant Sci., 109: 87–93.

    Article  CAS  Google Scholar 

  • Samoylov V M, Tucker D M and Parrott W A (1998a) Soybean [Glycine max (L.) Merrill] embryogenic cultures: The role of sucrose and total nitrogen content on proliferation. In Vitro Cell Dev. Biol. Plant, 34: 8–13.

    Google Scholar 

  • Samoylov V M, Tucker D M, Thibaud-Nissen F and Parrott W A (1998b) A liquid medium based protocol for rapid regeneration from embryogenic soybean cultivars. Plant Cell Rep., 18: 49–54.

    Article  CAS  Google Scholar 

  • Santos KGB, Mundstock E and Bodansese-Zanettini M H (1997) Genotype-specific normalization of soybean somatic embryogenesis through the use of an ethylene inhibitor. Plant Cell Rep., 16: 859–864.

    Article  CAS  Google Scholar 

  • Sato S, Newell C, Kolacz K, Tredo L, Finer J J and Hinchee M (1993) Stable transformation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep., 12: 408— 413.

    Google Scholar 

  • Saxena P K, Malik K A and Gill R (1992) Induction by thidiazuron of somatic embryogenesis in intact seedlings of peanut. Planta, 187: 421–424.

    Article  CAS  Google Scholar 

  • Scarpa G M, Pupilli F, Damiani F and Arcioni S (1993) Plant regeneration from callus and protoplasts in Medicago polymorpha. Plant Cell Tiss. Org. Cult., 35: 49–57.

    Article  CAS  Google Scholar 

  • Schmidt E D L,De Jong A J and DeVries S C (1994) Signal molecules involved in plant embryogenesis. Plant Mol. Biol.,26: 1305–1313.

    Google Scholar 

  • Sellars R M, Southward G M and Phillips G C (1990) Adventitious somatic embryogenesis from cultured immature zygotic embryos of peanut using soybean as a model system. Crop Sci., 30: 408–414.

    Article  CAS  Google Scholar 

  • Sen J and Mukherjee S G (1998) In vitro induction of multiple shoots and plant regeneration in Vigna. In Vitro Cell. Deu Biol. Plant, 34: 276–280.

    Article  CAS  Google Scholar 

  • Senaratna T, Mckersie B D and Bowley S R (1989) Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos: Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci., 65: 253–259.

    Article  CAS  Google Scholar 

  • Senaratna T, Mckersie B D and Bowley S R (1990) Artificial seeds of alfalfa (Medicago sativa L.): Induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev. Biol. Plant, 26: 85–90.

    Google Scholar 

  • Senaratna T, Saxena P K, Rao M V and Afela J (1995) Significance of the zygotic seed coat on quiescence and desiccation tolerance ofMedicago sativa L. somatic embryos. Plant Cell Rep., 14: 375–379.

    Article  CAS  Google Scholar 

  • Sharp W R, Evans D A and Soundahl M R (1982) Application of somatic embryogenesis to crop improvement. In: Plant Tissue Cult. Proc. 5th Inter. Cong. PlantTiss. and Cell Cult. (Ed Fujiwara A), Jap. Assoc. PlantTiss. Cult., Japan, pp. 759–762.

    Google Scholar 

  • Sharp W R, Sondahl M R, Caldas I S and Maraffa S B (1980) The physiology of in vitro asexual embryogenesis. Hort. Rev., 2: 268–310.

    CAS  Google Scholar 

  • Shekhawat N S and Galston A W (1983) Isolation, culture and regeneration of moth bean (Vigna aconitifblia) leaf protoplasts. Plant Sci. Lett., 32: 43–51.

    Article  Google Scholar 

  • Shoemaker R C, Amberger L A, Palmer R G, Oglesby L and Ranch J P (1991) Effect of 2,4-dichlorophenoxyacetic acid concentration on somatic embryogenesis and heritable variation in soybean [Glycine max (L.) Merr]. In Vitro Cell. Deu Biol. Plant, 27: 84–88.

    Google Scholar 

  • Shoemaker R C and Hammond E G (1988) Fatty acid composition of soybean (Glycine max (L.) Merr) somatic embryos. In Vitro Cell Deu Biol. Plant, 24: 829–832.

    Google Scholar 

  • Simmonds D H and Donaldson P A (2000) Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Rep., 19: 485–490.

    Article  CAS  Google Scholar 

  • Singsit C, Adang M J, Lynch R E, Anderson W F, Wang A, Cardineau G and Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cry 1A(C) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res., 6: 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Sinha R R, Das K and Sen S K (1983b) Embryoids from mesophyll protoplasts of Vigna mungo (L.) Hepper: A seed legume crop plant. Basic Life Sci., 22: 209–214.

    Google Scholar 

  • Skoleman R G and Mapes M O (1976) Acacia koa gray plantlets from somatic callus tissue. J. Heredity, 67: 114–115. Slawinska J and Obendorf R L (1991) Soybean somatic embryo maturation: composition, respiration, and water relations. Seed. Sci. Res., 1: 251–262.

    Google Scholar 

  • Sreenivasu K, Malik S K, Kumar P A and Sharma R P (1998) Plant regeneration via somatic embryogenesis in pigeonpea [Cajanus cajan (L.) Millsp.]. Plant Cell Rep., 17: 294–297.

    Article  CAS  Google Scholar 

  • Stejskal J and Griga M (1992) Somatic embryogenesis and plant regeneration in Pisum sativum L. Biol. Plant., 34: 15–22.

    Article  Google Scholar 

  • Stejskal J and Griga M (1995) Comparative analysis of some isozymes and proteins in somatic and zygotic embryos of soybean (Glycine max (L.) Merr). J. Plant Physiol., 146: 497–502.

    Article  CAS  Google Scholar 

  • Stewart C N Jr, Adang M J All J N, Boerma H R, Cardineau G, Tucker D and Parrott W A (1996) Genetic transformation, recovery and characterization of soybean [Glycine max (L.) Merrill] transgenic for a synthetic Bacillus thuringiensis CRY IA (C) gene. Plant Physiol.,112: 121–129.

    Google Scholar 

  • Stewart F C, Mapes M O and Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freshly suspended cells. Am. J. Bot., 45: 705–708.

    Article  Google Scholar 

  • Stickland S G, Nichol J W, McCall C M and Stuert D A (1987) Effects of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci., 48: 113–121.

    Article  Google Scholar 

  • Stirn S and Jacobsen H J (1987) Marker proteins for embryogenesis differentiation patterns in pea callus. Plant Cell Rep., 6: 50–54.

    Google Scholar 

  • Suhasini K, Sagare A P and Krishnamurthy K V (1994) Direct somatic embryogenesis from mature embryo axes in chickpea (Cicer arietinum L.). Plant Sci., 102: 189–194.

    Article  CAS  Google Scholar 

  • Suhasini K, Sagare A P and Krishnamurthy K V (1996) Study of aberrant morphologies and lack of conversion of somatic embryos of chickpea (Cicer arietinum L.). In Vitro Cell. Dev Biol. Plant, 32: 6–10.

    Google Scholar 

  • Suhasini K, Sagare A P, Sainkar S R and Krishnamurthy K V (1997) Comparative study of the development of zygotic and somatic embryos of chickpea (Cicer arietinum L.). Plant Sei., 128: 207–216.

    Article  CAS  Google Scholar 

  • Tegeder M, Kohn H, Nibbe M, Schieder O and Pickardt T (1996) Plant regeneration from protoplasts of Vicia narbornensis via somatic embryogenesis and shoot organogenesis. Plant Cell Rep., 16: 22–25.

    Article  CAS  Google Scholar 

  • Tetu T, Sangwan R S and Sangwan-Norreel B S (1990) Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryos of Pisum sativum L. J. Plant Physiol., 137: 102–109.

    Article  Google Scholar 

  • Tomar U K and Gupta S C (1988) Somatic embryogenesis and organogenesis in callus cultures of a tree legume — Albizzia richardiana King. Plant Cell Rep., 7: 70–73.

    Article  CAS  Google Scholar 

  • Tomar U K and Gupta S C (1992) Factors affecting somatic embryogenesis in four-year old callus of a Fabaceous tree —Albizzia richardiana Kin. In: Tissue Culture of Forest Tree Species: Recent researches in India (Eds Dhawan V, Ganapathy P M and Khurana D K ), IDRC-TIFNET, pp. 38–50.

    Google Scholar 

  • Trick H N, Dinkins R B, Santarem E R, Di R, Samoylov V, Meurer C A, Walker D R, Parrott W A, Finer J J and Collins G B (1997) Recent advances in soybean transformation. Plant Tiss. Cult. Biotech., 3: 9–26.

    Google Scholar 

  • Trigiano R N, Beaty R M and Graham E T (1988) Somatic embryogenesis from immature embryos of redbud (Cercis canadensis). Plant Cell Rep., 7: 148–150.

    Article  CAS  Google Scholar 

  • Trigiano R N, Buckley L G and Merkle S A (1999) Somatic embryogenesis in woody legumes. In: Somatic Embryogenesis in Woody Plants, Vol. 4 (Eds Jain S M, Gupta P K and Newton R J ), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 189–208.

    Google Scholar 

  • Trigiano R N, Geneve R L, Merkle S A and Preece J E (1992) Tissue and cell cultures of woody legumes. Hort. Rev, 14: 265–332.

    CAS  Google Scholar 

  • Trigiano R N, Geneve R L and Buckley L G (1995) Somatic embryogenesis in eastern redbud Cercis canadensis. In: Somatic Embryogenesis in Woody Plants, Vol. 2 (Eds Jain S M, Gupta P K and Newton R J ), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 471–482.

    Chapter  Google Scholar 

  • Trinh T H, Patel P, Kondorosi K, Durand P, Kamate K, Baner P and Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. Falcata lines improved in somatic embryogenesis. Plant Cell Rep., 17: 345–355.

    Article  CAS  Google Scholar 

  • VanDoorne L E, Marshall G and Kirkwood R C (1995) Somatic embryogenesis in pea (Pisum sativum L.): Effect of explant, genotype and culture conditions. Ann. Appl. Biol., 126: 169–179.

    Article  Google Scholar 

  • Vani A K S and Reddy V D (1996) Morphogenesis from callus cultures of chickpea (Cicer arietinum L.). Indian J. Exp. Biol., 34: 285–287.

    Google Scholar 

  • Venkatachalam P (1996) Tissue culture, mutational and genetic studies in groundnut (Arachis hypogaea L.) to develop cultivars for high yield, oil content and disease resistance. Ph.D. thesis, Bharathidasan University, Tiruchirappalli, India.

    Google Scholar 

  • Venkatachalam P, Geetha N and Jayabalan N (1998) Induction of somatic embryos and plantlet development in cell suspension cultures of Arachis hypogaea L. Breed. Sci., 48: 231–236.

    Google Scholar 

  • Venkatachalam P, Geetha N, Khandelwal A, Shaila M S and Lakshmi Sita G (1999a) Induction of direct somatic embryogenesis and plant regeneration from mature cotyledon explants of Arachis hypogaea L. Cure. Sci., 77: 269–273.

    Google Scholar 

  • Venkatachalam P and Jayabalan N (1996) Efficient callus induction and plant regeneration via somatic embryogenesis from immature leaf-derived protoplasts of groundnut (Arachis hypogaea L.). Israel J. Plant Sci., 44: 387–396.

    Google Scholar 

  • Venkatachalam P, Kavi Kishor P B, Geetha N, Thangavelu M and Jayabalan N (1999b) A rapid protocol for somatic embryogenesis from immature leaflets of groundnut (Arachis hypogaea L.). In Vitro Cell. Dev. Biol. Plant, 35: 409–412.

    Google Scholar 

  • Venkatachalam P, Kavi Kishor P B and Jayabalan N (1997) High frequency somatic embryogenesis and efficient plant regeneration from hypocotyl explants of groundnut (Arachis hypogaea L.). Cure. Sci., 72: 271–275.

    Google Scholar 

  • Venkatachalam P, Geetha N, Khandelwal A, Shaila M S and Lakshmi Sita G (2000) Agrobacterium-mediated genetic transformation and regeneration of transgenic plant cotyledon explants of groundnut (Arachis hypogaea L.) via somatic embryogenesis. Cure. Sci., 78: 1130–1136.

    CAS  Google Scholar 

  • Venu C H, Pavan U, Jayasree T, Ramana R V, Cheralu C and Sadanandam A (1999) Genotype-dependent embryogenesis, organogenesis and Agrobacterium-mediated transformation in pigeonpea (Cajanus cajan L.). PlantTiss. Cult., 9: 89–95.

    Google Scholar 

  • Wan Y, Sorensen E L and Liang G H (1988) Genetic control of in vitro regeneration in alfalfa (Medicago sativa L.). Euphytica, 39: 3–10.

    Article  Google Scholar 

  • Wang H and Holl F B (1988) In vitro culture and incidence of somaclonal variation in regenerated plants of Trifolium pratense L. Plant Sci., 55: 159–167.

    Google Scholar 

  • Weaver L A and Trigiano R N (1991) Regeneration of Cladastris lutea (Fabaceae) via somatic embryogenesis. Plant Cell Rep., 10: 183–186.

    Article  CAS  Google Scholar 

  • Weissinger A K H and Parrott W A (1993) Repetitive somatic embryogenesis and conversion to plants in white clover. Plant Cell Rep., 12: 125–128.

    Article  Google Scholar 

  • Wetzstein H Y and Baker C M (1993) The relationship between somatic embryo morphology and conversion in peanut (Arachis hypogaea L.). Plant Sci., 92: 81–89.

    Article  Google Scholar 

  • Williams E G, Collins G B and Myers J R (1990) Clovers (Trifolium spp.). In: Biotechnology in Agriculture and Forestry, Vol. 10, Legumes and Oilseed Crops I (Ed Bajaj Y P S ), Springer; Berlin, Heidelberg, New York, pp. 242–287.

    Chapter  Google Scholar 

  • Williams E G and Maheswaran G (1986) Somatic embryogenesis: Factors influencing coordinated behaviour of cells as an embryogenic group. Ann. Bot., 57: 443–462.

    Google Scholar 

  • Wright M S, Launis K L and Novitzky R (1991) A simple method for the recovery of multiple fertile plants from individual somatic embryos of soybean [Glycine max (L.) Merrill]. In Vitro Cell. Dev. Biol. Plant, 27: 153–157.

    Google Scholar 

  • Yang H, Singsit C, Wang A, Gonsalves D and Ozias-Akins P (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep., 17: 693–699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Venkatachalam, P., Geetha, N., Priya, P., Jayabalan, N., Sita, G.L. (2003). Somatic Embryogenesis. In: Jaiwal, P.K., Singh, R.P. (eds) Improvement Strategies of Leguminosae Biotechnology. Focus on Biotechnology, vol 10A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0109-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0109-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6331-1

  • Online ISBN: 978-94-017-0109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics