Skip to main content

Genetic Improvement of Drought Resistance in Rice

  • Chapter
  • First Online:
Genetic Manipulation in Plants for Mitigation of Climate Change

Abstract

Among multiple abiotic stresses, drought or water deficit is considered the most important constraint in rice production in many rice-growing areas. Therefore, development of drought-resistant rice varieties is urgently needed. Through identification of drought-resistant germplasms, numerous genetic resources with drought resistance traits have been introduced to commercialized paddy rice cultivars through conventional breeding. Many drought resistance quantitative trait loci (QTLs) were also identified based on root-, leaf-, and yield-related traits. Especially, some QTLs that showed a large and consistent effect in a wide range of environments are of special interest for improving drought resistance of elite rice cultivars following marker-assisted breeding. Using transgenic techniques, many drought-resistance transgenic rice lines have been produced by changing the expression of endogenous drought-responsive genes or by introducing exogenous genes. Some transgenic rice plants that harbored the drought-responsive genes driven by appropriate promoters showed significantly improved drought resistance without phenotypic changes or yield penalty in the field conditions, suggesting of potential promise of genetic engineering in genetic improvement of drought resistance in rice. All these genetic resources, combined with the development of new strategies and drought screening methods, provide great opportunities to improve drought resistance in rice. This article provides an overview and perspective of the strategies, resources, progresses, and challenges toward the improvement of drought resistance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali M, Pathan M, Zhang J, Bai G, Sarkarung S, Nguyen H (2000) Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 101(5):756–766

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12(9):419–426

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    Article  CAS  PubMed  Google Scholar 

  • Atlin G, Lafitte H (2000) Marker-assisted breeding versus direct selection for drought tolerance in rice. In: Saxena N, O’Toole J (eds) Field screening for drought tolerance in crop plants with emphasis on rice: Proceedings of an international workshop on field screening for drought tolerance in rice, 11–14 Dec 2000. ICRISAT/The Rockefeller Foundation, Patancheru/New York, pp 71–81

    Google Scholar 

  • Babu RC, Nguyen BD, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh S, Palchamy A, Sadasivam S, Sarkarung S (2003) Genetic analysis of drought resistance in rice by molecular markers. Crop Sci 43(4):1457–1469

    Article  CAS  Google Scholar 

  • Bae H, Kim SK, Cho SK, Kang BG, Kim WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180(6):775–782

    Article  CAS  PubMed  Google Scholar 

  • Becraft PW (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18:163–192

    Article  CAS  PubMed  Google Scholar 

  • Ben Saad R, Fabre D, Mieulet D, Meynard D, Dingkuhn M, Al-Doss A, Guiderdoni E, Hassairi A (2012) Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Plant Cell Environ 35(3):626–643

    Article  PubMed  CAS  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47(2):507–516

    Article  Google Scholar 

  • Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Breeding upland rice for drought resistance. J Sci Food Agric 88(6):927–939

    Article  CAS  Google Scholar 

  • Bernier J, Kumar A, Venuprasad R, Spaner D, Verulkar S, Mandal NP, Sinha PK, Peeraju P, Dongre PR, Mahto R (2009) Characterization of the effect of a QTL for drought resistance in rice, qtl12.1, over a range of environments in the Philippines and eastern India. Euphytica 166(2):207–217

    Article  Google Scholar 

  • Bolanos J, Edmeades G (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res 48(1):65–80

    Article  Google Scholar 

  • Campo S, Peris-Peris C, Montesinos L, Penas G, Messeguer J, San Segundo B (2012) Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. J Exp Bot 63(2):983–999

    Article  CAS  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101(26):9909–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147(2):446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champoux M, Wang G, Sarkarung S, Mackill D, O’Toole J, Huang N, McCouch S (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90(7):969–981

    CAS  PubMed  Google Scholar 

  • Chandra Babu R, Zhang J, Blum A, David Ho T-H, Wu R, Nguyen H (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166(4):855–862

    Article  CAS  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30(12):2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Chen W, Zhou J, He H, Chen L, Deng XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193–194:8–17

    Article  PubMed  CAS  Google Scholar 

  • Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65(7–8):1150–1160

    Article  CAS  PubMed  Google Scholar 

  • Cooper M (1999) Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crop Res 64(1):13–34

    Article  Google Scholar 

  • Courtois B, McLaren G, Sinha P, Prasad K, Yadav R, Shen L (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol Breed 6(1):55–66

    Article  CAS  Google Scholar 

  • Courtois B, Shen L, Petalcorin W, Carandang S, Mauleon R, Li Z (2003) Locating QTLs controlling constitutive root traits in the rice population IAC 165× Co39. Euphytica 134(3):335–345

    Article  CAS  Google Scholar 

  • Cui K, Huang J, Xing Y, Yu S, Xu C, Peng S (2008) Mapping QTLs for seedling characteristics under different water supply conditions in rice (Oryza sativa). Physiol Plant 132(1):53–68

    CAS  PubMed  Google Scholar 

  • Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49(12):1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Ganguly M, Krishnan S, Yamaguchi Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10(5):579–586

    Article  CAS  PubMed  Google Scholar 

  • Deikman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (2002) Proline biosynthesis and osmoregulation in plants. Plant J 4(2):215–223

    Article  Google Scholar 

  • DeLong A (2006) Switching the flip: protein phosphatase roles in signaling pathways. Curr Opin Plant Biol 9(5):470–477

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154(3):1304–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7(9):e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Zhang M, Zhang H, Xiong H, Liu P, Ali J, Li J, Li Z (2012) OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci 196:143–151

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280(6):547–563

    Article  CAS  PubMed  Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crop Res 40(2):67–86

    Article  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23(1):412–427

    Article  CAS  PubMed  Google Scholar 

  • Galichet A, Gruissem W (2003) Protein farnesylation in plants – conserved mechanisms but different targets. Curr Opin Plant Biol 6(6):530–535

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R (2008) Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep 27(11):1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76(1–2):145–156

    Article  CAS  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Yin X, Struik PC, Stomph TJ, Wang H (2012) Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot 63(1):455–469

    Article  CAS  PubMed  Google Scholar 

  • Guan YS, Serraj R, Liu SH, Xu JL, Ali J, Wang WS, Venus E, Zhu LH, Li ZK (2010) Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). J Exp Bot 61(15):4145–4156

    Article  CAS  PubMed  Google Scholar 

  • Hadiarto T, Tran LS (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30(3):297–310

    Article  CAS  PubMed  Google Scholar 

  • Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

    Article  CAS  PubMed  Google Scholar 

  • Hare P, Cress W, Van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23(1):79–103

    CAS  Google Scholar 

  • Hemamalini G, Shashidhar H, Hittalmani S (2000) Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112(1):69–78

    Article  CAS  Google Scholar 

  • Horii H, Nemoto K, Miyamoto N, Harada J (2006) Quantitative trait loci for adventitious and lateral roots in rice. Plant Breed 125(2):198–200

    Article  CAS  Google Scholar 

  • Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A 106(15):6410–6415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103(35):12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67(1–2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xiao B, Xiong L (2007) Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226(1):73–85

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H (2009a) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389(3):556–561

    Article  CAS  PubMed  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009b) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Sun S, Xu D, Lan H, Sun H, Wang Z, Bao Y, Wang J, Tang H, Zhang H (2012) A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Mol Biol 80(3):337–350

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Shirota K, Higa M, Kawamitsu Y (2001a) Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa. Plant Physiol Biochem 39(2):173–177

    Article  CAS  Google Scholar 

  • Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin S, Monna L, Sasaki T, Ohsugi R (2001b) Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet 102(6):793–800

    Article  CAS  Google Scholar 

  • Ishizaki T, Maruyama K, Obara M, Fukutani A, Yamaguchi-Shinozaki K, Ito Y, Kumashiro T (2013) Expression of Arabidopsis DREB1C improves survival, growth, and yield of upland New Rice for Africa (NERICA) under drought. Mol Breed 31(1):255–264

    Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47(1):141–153

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, b ZIPRG (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    Article  CAS  PubMed  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131(2):516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11(1):101–114

    Article  CAS  PubMed  Google Scholar 

  • Jiang SY, Bhalla R, Ramamoorthy R, Luan HF, Venkatesh PN, Cai M, Ramachandran S (2012) Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res 21(4):785–795

    Article  CAS  PubMed  Google Scholar 

  • Kamoshita A, Wade L, Ali M, Pathan M, Zhang J, Sarkarung S, Nguyen H (2002) Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104(5):880–893

    Article  CAS  PubMed  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66(5):445–462

    Article  CAS  PubMed  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104(39):15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65(4):453–466

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97(6):2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Venuprasad R, Atlin G (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crop Res 103(1):42–52

    Article  Google Scholar 

  • Lafitte HR, Price AH, Courtois B (2004) Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet 109(6):1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Lafitte H, Li Z, Vijayakumar C, Gao Y, Shi Y, Xu J, Fu B, Yu S, Ali A, Domingo J (2006) Improvement of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crop Res 97(1):77–86

    Article  Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58(2):169–175

    Article  CAS  PubMed  Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135(1):384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64(1):83–108

    Article  CAS  PubMed  Google Scholar 

  • Laza MRC, Kondo M, Ideta O, Barlaan E, Imbe T (2010) Quantitative trait loci for stomatal density and size in lowland rice. Euphytica 172(2):149–158

    Article  Google Scholar 

  • Li ZK, Xu JL (2007) Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 531–564

    Chapter  Google Scholar 

  • Li Z, Mu P, Li C, Zhang H, Gao Y, Wang X (2005) QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet 110(7):1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011a) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234(5):1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang D, Xie Y, Zhang H, Hu G, Dai A, Liu L, Li Z (2011b) Development of upland rice introgression lines and identification of QTLs for basal root thickness under different water regimes. J Genet Genomics 38(11):547–556

    Article  CAS  PubMed  Google Scholar 

  • Li M, Lin X, Li H, Pan X, Wu G (2011c) Overexpression of AtNHX5 improves tolerance to both salt and water stress in rice (Oryza sativa L.). Plant Cell Tissue Org Cult 107(2):283–293

    Article  CAS  Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45(4):481–489

    Article  CAS  PubMed  Google Scholar 

  • Lilley J, Ludlow M, McCouch S, O’Toole J (1996) Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47(9):1427–1436

    Article  CAS  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97(7):3730–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226(4):1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Mei H, Yu X, Zou G, Liu H, Hu S, Li M, Wu J, Chen L, Luo L (2008) QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Sci 174(1):71–77

    Article  CAS  Google Scholar 

  • Liu WY, Wang MM, Huang J, Tang HJ, Lan HX, Zhang HS (2009) The OsDHODH1 gene is involved in salt and drought tolerance in rice. J Integr Plant Biol 51(9):825–833

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Mei H, Liu H, Yu X, Zou G, Luo L (2010) Sensitivities of rice grain yield and other panicle characters to late-stage drought stress revealed by phenotypic correlation and QTL analysis. Mol Breed 25(4):603–613

    Article  CAS  Google Scholar 

  • Liu J, Zhang F, Zhou J, Chen F, Wang B, Xie X (2012) Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78(3):289–300

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229(3):605–615

    Article  CAS  PubMed  Google Scholar 

  • Luan S (2003) Protein phosphatases in plants. Annu Rev Plant Biol 54:63–92

    Article  CAS  PubMed  Google Scholar 

  • Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61(13):3509–3517

    Article  CAS  PubMed  Google Scholar 

  • MacMillan K, Emrich K, Piepho HP, Mullins CE, Price AH (2006) Assessing the importance of genotype x environment interaction for root traits in rice using a mapping population II: conventional QTL analysis. Theor Appl Genet 113(5):953–964

    Article  CAS  PubMed  Google Scholar 

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63(1):163–175

    Article  CAS  PubMed  Google Scholar 

  • Mishra KK, Vikram P, Yadaw RB, Swamy BM, Dixit S, Cruz MT, Maturan P, Marker S, Kumar A (2013) qDTY12.1: a locus with a consistent effect on grain yield under drought in rice. BMC Genet 14(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152(2):876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157(1):242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138(1):341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5(5):646–656

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150(3):1368–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62(2):316–329

    Article  CAS  PubMed  Google Scholar 

  • Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, O’Toole J (2002) Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands: Part 1. Grain yield and yield components. Field Crop Res 73(2):153–168

    Article  Google Scholar 

  • Park GG, Park JJ, Yoon J, Yu SN, An G (2010) A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74(4–5):467–478

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9(7):747–758

    Article  CAS  PubMed  Google Scholar 

  • Peremarti A, Bassie L, Christou P, Capell T (2009) Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase. Plant Mol Biol 70(3):253–264

    Article  CAS  PubMed  Google Scholar 

  • Phung TH, Jung HI, Park JH, Kim JG, Back K, Jung S (2011) Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol 157(4):1746–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17(2):281–291

    Article  CAS  PubMed  Google Scholar 

  • Price A, Courtois B (1999) Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Regul 29(1):123–133

    Article  CAS  Google Scholar 

  • Price A, Tomos A (1997) Genetic dissection of root growth in rice (Oryza sativa L.). II: mapping quantitative trait loci using molecular markers. Theor Appl Genet 95(1):143–152

    Article  CAS  Google Scholar 

  • Price A, Steele K, Moore B, Barraclough P, Clark L (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100(1):49–56

    Article  CAS  Google Scholar 

  • Price A, Steele K, Moore B, Jones R (2002a) Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: II. Mapping quantitative trait loci for root morphology and distribution. Field Crop Res 76(1):25–43

    Article  Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002b) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53(371):989–1004

    Article  CAS  PubMed  Google Scholar 

  • Price AH, Townend J, Jones MP, Audebert A, Courtois B (2002c) Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol 48(5–6):683–695

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Mu P, Zhang H, Chen CY, Gao Y, Tian Y, Wen F, Li Z (2008) Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133(2):187–200

    Article  PubMed  Google Scholar 

  • Quan R, Hu S, Zhang Z, Zhang H, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8(4):476–488

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Laurie DA, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol 35(1–2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Ray J, Yu L, McCouch S, Champoux M, Wang G, Nguyen H (1996) Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet 92(6):627–636

    Article  CAS  PubMed  Google Scholar 

  • Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10(7):792–805

    Article  CAS  PubMed  Google Scholar 

  • Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta 1819(2):186–194

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104(49):19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robin S, Pathan M, Courtois B, Lafitte R, Carandang S, Lanceras S, Amante M, Nguyen H, Li Z (2003) Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet 107(7):1288–1296

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17. 7. Plant Cell Rep 27(2):329–334

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410(6826):327–330

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65(6):907–921

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Kumar A, McNally K, Slamet-Loedin I, Bruskiewich R, Mauleon R, Cairns J, Hijmans R (2009) Improvement of drought resistance in rice. Adv Agron 103:41–99

    Article  CAS  Google Scholar 

  • Shen L, Courtois B, McNally K, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103(1):75–83

    Article  CAS  Google Scholar 

  • Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 80(3):241–253

    Article  CAS  PubMed  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Steele K (2009) Novel upland rice variety bred using marker-assisted selection and client-oriented breeding released in Jharkhand, India. Bangor University

    Google Scholar 

  • Steele K, Price A, Shashidhar H, Witcombe J (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112(2):208–221

    Article  CAS  PubMed  Google Scholar 

  • Steele K, Virk D, Kumar R, Prasad S, Witcombe J (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101(2):180–186

    Article  Google Scholar 

  • Suji KK, Biji KR, Poornima R, Prince KS, Amudha K, Kavitha S, Mankar S, Babu RC (2012) Mapping QTLs for plant phenology and production traits using indica rice (Oryza sativa L.) lines adapted to rainfed environment. Mol Biotechnol 52(2):151–160

    Article  CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284(3):173–183

    Article  CAS  PubMed  Google Scholar 

  • Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158(4):1755–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    Article  CAS  PubMed  Google Scholar 

  • Tripathy J, Zhang J, Robin S, Nguyen TT, Nguyen H (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100(8):1197–1202

    Article  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17(2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Venuprasad R, Lafitte H, Atlin G (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47(1):285–293

    Article  Google Scholar 

  • Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Sta Cruz MT, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120(1):177–190

    Article  PubMed  Google Scholar 

  • Vikram P, Swamy BP, Dixit S, Ahmed HU, Teresa Sta Cruz M, Singh AK, Kumar A (2011) qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One 6(9):e25216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162(4):465–472

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67(6):589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Xiao B, Xiong L (2011) Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol 168(18):2212–2224

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78(3):275–288

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144(3):1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2(1):73–83

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15(3):745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13(9):2063–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48(2):391–407

    Article  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD WR (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Li X, Xue Y, Huang Y, Gao J, Xing YZ (2004) Comparison of quantitative trait loci controlling seedling characteristics at two seedling stages using rice recombinant inbred lines. Theor Appl Genet 109(3):640–647

    Article  CAS  PubMed  Google Scholar 

  • Xu JL, Lafitte HR, Gao YM, Fu BY, Torres R, Li ZK (2005) QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet 111(8):1642–1650

    Article  CAS  PubMed  Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582(7):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, This D, Pausch RC, Vonhof WM, Coburn JR, Comstock JP, McCouch SR (2009) Leaf-level water use efficiency determined by carbon isotope discrimination in rice seedlings: genetic variation associated with population structure and QTL mapping. Theor Appl Genet 118(6):1065–1081

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep 30(10):1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Courtois B, Huang N, McLaren G (1997) Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 94(5):619–632

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70(1–2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3):469–490

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63(7):2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Du H, Tang N, Li X, Xiong L (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71(3):291–305

    Article  CAS  PubMed  Google Scholar 

  • You J, Hu H, Xiong L (2012) An ornithine delta-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice. Plant Sci 197:59–69

    Article  CAS  PubMed  Google Scholar 

  • Yu SB, Xu WJ, Vijayakumar CH, Ali J, Fu BY, Xu JL, Jiang YZ, Marghirang R, Domingo J, Aquino C, Virmani SS, Li ZK (2003) Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theor Appl Genet 108(1):131–140

    Article  CAS  PubMed  Google Scholar 

  • Yue B, Xiong L, Xue W, Xing Y, Luo L, Xu C (2005) Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor Appl Genet 111(6):1127–1136

    Article  PubMed  Google Scholar 

  • Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172(2):1213–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue B, Xue W, Luo L, Xing Y (2008) Identification of quantitative trait loci for four morphologic traits under water stress in rice (Oryza sativa L.). J Genet Genomics 35(9):569–575

    Article  PubMed  Google Scholar 

  • Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A 104(42):16402–16409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zheng H, Aarti A, Pantuwan G, Nguyen T, Tripathy J, Sarial A, Robin S, Babu R, Nguyen BD (2001a) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103(1):19–29

    Article  CAS  Google Scholar 

  • Zhang W, Shen X, Wu P, Hu B, Liao C (2001b) QTLs and epistasis for seminal root length under a different water supply in rice (Oryza sativa L.). Theor Appl Genet 103(1):118–123

    Article  CAS  Google Scholar 

  • Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C (2006) Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol 62(1–2):247–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151(4):1889–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R (2010a) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19(5):809–818

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li F, Li D, Zhang H, Huang R (2010b) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232(3):765–774

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xiao S, Li W, Feng W, Li J, Wu Z, Gao X, Liu F, Shao M (2011) Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J Exp Bot 62(12):4229–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z (2012a) The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J 72(5):805–816

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PB (2012b) Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol 80(6):571–585

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Hu Y, Chong K, Wang T (2010) ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot 105(3):401–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng HG, Babu RC, Pathan MS, Ali L, Huang N, Courtois B, Nguyen HT (2000) Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Yang L, Zhang W, Mao C, Wu Y, Yi K, Liu F, Wu P (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet 107(8):1505–1515

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Yang L, Mao C, Huang Y, Wu P (2008) Comparison of QTLs for rice seedling morphology under different water supply conditions. J Genet Genomics 35(8):473–484

    Article  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Li Y, Zhao BC, Ge RC, Shen YZ, Wang G, Huang ZJ (2009) Overexpression of TaSTRG gene improves salt and drought tolerance in rice. J Plant Physiol 166(15):1660–1671

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan Y-L, Wu R (1998) Overexpression of a [delta] 1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci 139(1):41–48

    Article  CAS  Google Scholar 

  • Zou GH, Mei HW, Liu HY, Liu GL, Hu SP, Yu XQ, Li MS, Wu JH, Luo LJ (2005) Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. Theor Appl Genet 112(1):106–113

    Article  CAS  PubMed  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169(6):628–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Program for Basic Research of China (2012CB114305) and the National Program on High Technology Development (2012AA10A303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

You, J., Xiong, L. (2015). Genetic Improvement of Drought Resistance in Rice. In: Jaiwal, P., Singh, R., Dhankher, O. (eds) Genetic Manipulation in Plants for Mitigation of Climate Change. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2662-8_4

Download citation

Publish with us

Policies and ethics