Skip to main content
Log in

Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress. Trans-activation assays in yeast and transient expression analyses in rice protoplasts demonstrated that Oshox22 is able to bind the CAAT(G/C)ATTG element and acts as a transcriptional activator that requires both the HD and Zip domains. Rice plants homozygous for a T-DNA insertion in the promoter region of Oshox22 showed reduced Oshox22 expression and ABA content, decreased sensitivity to ABA, and enhanced tolerance to drought and salt stresses at the seedling stage. In contrast, transgenic rice over-expressing Oshox22 showed increased sensitivity to ABA, increased ABA content, and decreased drought and salt tolerances. Based on these results, we conclude that Oshox22 affects ABA biosynthesis and regulates drought and salt responses through ABA-mediated signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HD-Zip:

Homeodomain-leucine zipper

ABA:

Abscisic acid

PEG:

Polyethylene glycol

GFP:

Green fluorescent protein

RT:

Reverse transcription

PCR:

Polymerase chain reaction

HB:

Homeobox

References

  • Agalou A, Purwantomo S, Overnäs E, Johannesson H, Zhu X, Estiati A, de Kam RJ, Engström P, Slamet-Loedin IH, Zhu Z, Wang M, Xiong L, Meijer AH, Ouwerkerk PBF (2008) A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66:87–103

    Article  PubMed  CAS  Google Scholar 

  • Aso K, Kato M, Banks JA, Hasebe M (1999) Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. Mol Biol Evol 16:544–552

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Chan RL, Gago GM, Palena CM, Gonzalez DH (1998) Homeoboxes in plant development. Biochim Biophys Acta 1442:1–19

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol Plant Pathol 7:417–427

    Article  PubMed  CAS  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945–4950

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Phillips J, Meijer AH, Salamini F, Bartels D (2002) Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 49:601–610

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Phillips J, Bräutigam A, Engström P, Johannesson H, Ouwerkerk PBF, Ruberti I, Salinas J, Vera P, Iannacone R, Meijer AH, Bartels D (2006) A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses. Plant Mol Biol 61:469–489

    Article  PubMed  CAS  Google Scholar 

  • Derelle R, Lopez P, Le Guyader H, Manuel M (2007) Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev 9:212–219

    Article  PubMed  CAS  Google Scholar 

  • Dezar CA, Gago GM, Gonzalez DH, Chan RL (2005a) HAHB-4, a sunflower homeobox-leucine zipper gene, confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res 14:429–440

    Article  PubMed  CAS  Google Scholar 

  • Dezar CA, Fedrigo GV, Chan RL (2005b) The promoter of the sunflower HD-Zip protein gene HAHB4 directs tissue-specific expression and is inducible by water stress, high salt concentrations and ABA. Plant Sci 169:447–459

    Article  CAS  Google Scholar 

  • Frank W, Phillips J, Salamini F, Bartels D (1998) Two dehydration inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. Plant J 15:413–421

    Article  PubMed  CAS  Google Scholar 

  • Gago GM, Almoguera C, Jordano J, Gonzales DH, Chan RL (2002) Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant, Cell Environ 25:633–640

    Article  CAS  Google Scholar 

  • Henriksson E, Olsson ASB, Johannesson H, Johansson H, Hanson J, Engström P, Söderman E (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol 139:509–518

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M, Höhner B, Grill E (2002) Homeodomain protein Athb6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038

    Article  PubMed  CAS  Google Scholar 

  • Hjellström M, Olsson ASB, Engström P, Söderman EM (2003) Constitutive expression of the water deficit-inducible homeobox gene Athb7 in transgenic Arabidopsis causes a suppression of stem elongation growth. Plant, Cell Environ 26:1127–1136

    Article  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  PubMed  CAS  Google Scholar 

  • Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z-F (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2008) Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J 275:2845–2861

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132

    Article  PubMed  CAS  Google Scholar 

  • Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662

    Article  PubMed  CAS  Google Scholar 

  • Johannesson H, Wang Y, Engström P (2001) DNA-binding and dimerisation preferences of Arabidopsis homeodomain-leucine zipper transcription factors in vitro. Plant Mol Biol 45:63–73

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Oh HS, Cheon CI, Hwang IT, Kim YJ, Chun JY (2001) Structure and expression of the Arabidopsis thaliana homeobox gene Athb-12. Biochem Biophys Res Commun 284:133–141

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant cell 9:759–771

    PubMed  CAS  Google Scholar 

  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  PubMed  Google Scholar 

  • López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    Article  PubMed  Google Scholar 

  • Manavella PA, Arce AL, Dezar CA, Bitton F, Renou FP, Crespi M, Chan RL (2006) Cross-talk between ethylene and drought signaling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J 48:125–137

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, Scarpella E, van Dijk EL, Qin L, Taal AJ, Rueb S, Harrington SE, McCouch SR, Schilperoort RA, Hoge JHC (1997) Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J 11:263–276

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, Ouwerkerk PBF, Hoge JHC (1998) Vectors for transcription factor isolation and target gene identification by means of genetic selection in yeast. Yeast 14:1407–1416

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, Schouten J, Ouwerkerk PBF, Hoge JHC (2000a) Yeast as versatile tool in transcription factor research. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual (chap E3, 2nd edn, suppl IV). Kluwer, Dordrecht, pp 1–28

  • Meijer AH, de Kam RJ, d’Ehrfurth I, Shen W, Hoge JHC (2000b) HD-Zip proteins of families I and II from rice: interactions and functional properties. Mol Gen Genet 263:12–21

    Article  PubMed  CAS  Google Scholar 

  • Melcher K, Zhou XE, Xu HE (2010) Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Curr Opin Struct Biol 20:722–729

    Article  PubMed  CAS  Google Scholar 

  • Memelink J, Swords KMM, Staehelin LA, Hoge JHC (1994) Southern, northern and western blot analysis. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp F1–F23

    Google Scholar 

  • Morelli G, Ruberti I (2002) Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci 7:399–404

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee K, Brocchieri L, Burglin TR (2009) A comprehensive classification and revolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794

    Article  PubMed  CAS  Google Scholar 

  • Ohgishi M, Oka A, Morelli G, Ruberti I, Aoyama T (2001) Negative autoregulation of the Arabidopsis homeobox gene Athb-2. Plant J 25:389–398

    Article  PubMed  CAS  Google Scholar 

  • Olsson ASB, Engström P, Söderman E (2004) The homeobox genes Athb12 and Athb7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55:663–677

    Article  PubMed  CAS  Google Scholar 

  • Osnato M, Stile MR, Wang Y, Meynard D, Curiale S, Guiderdoni E, Liu Y, Horner DS, Ouwerkerk PBF, Pozzi C, Müller KI, Salamini F, Rossini L (2010) Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley. Plant Physiol 154:1616–1632

    Article  PubMed  CAS  Google Scholar 

  • Ouwerkerk PBF, Meijer AH (2001) Yeast one-hybrid screening for DNA-protein interactions. Curr Prot Mol Biol 12.12.1–12.12.22

  • Ouwerkerk PBF, Meijer AH (2011) Yeast one-hybrid screens for detection of transcription factor DNA interactions. Methods Mol Biol 678:211–227

    Article  PubMed  CAS  Google Scholar 

  • Palena CM, Gonzalez DH, Chan RL (1999) A monomer-dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein HaHB-4 with DNA. Biochem J 341:81–87

    Article  PubMed  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Ruberti I, Sessa G, Lucchetti S, Morelli G (1991) A novel class of plant proteins containing a homeodomain with a closely linked leucine zipper motif. EMBO J 10:1787–1791

    PubMed  CAS  Google Scholar 

  • Rueb S, Leneman M, Schilperoort RA, Hensgens LAM (1994) Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.). Plant Cell Tiss Org Cult 36:259–264

    Article  Google Scholar 

  • Sakakibara K, Nishiyama T, Kato M, Hasebe M (2001) Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol 18:491–502

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed  CAS  Google Scholar 

  • Sawa S, Ohgishi M, Goda H, Higuchi K, Shimada Y, Yoshida S, Koshiba T (2002) The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J 32:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E, Rueb S, Boot KJM, Hoge JHC, Meijer AH (2000) A role for the rice homeobox gene Oshox1 in provascular cell fate commitment. Development 127:3655–3669

    PubMed  CAS  Google Scholar 

  • Schena M, Davis RW (1992) HD-Zip protein members of Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA 89:3894–3898

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carnici P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, Morelli G, Ruberti I (1993) The ATHB-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA-binding specificities. EMBO J 12:3507–3517

    PubMed  CAS  Google Scholar 

  • Sessa G, Morelli G, Ruberti I (1997) DNA-binding specificity of the homeodomain leucine zipper domain. J Mol Biol 274:303–309

    Article  PubMed  CAS  Google Scholar 

  • Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X Gao H Zhou G, Li T, Yang X (2011, in press) Heterologous expression of the Chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotech 51:160–173

    Google Scholar 

  • Söderman E, Mattsson J, Engström P (1996) The Arabidopsis homeobox gene Athb-7 is induced by water deficit and by abscisic acid. Plant J 10:375–381

    Article  PubMed  Google Scholar 

  • Söderman E, Hjellström M, Fahleson J, Engström P (1999) The HD-Zip gene Athb6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol Biol 40:1073–1083

    Article  PubMed  Google Scholar 

  • Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T, Morelli G, Ruberti I (1999) Shade avoidance responses are mediated by the Athb-2 HD-Zip protein, a negative regulator of gene expression. Development 126:4235–4245

    PubMed  CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Henriksson E, Söderman E, Henriksson NK, Sundberg E, Engström P (2003) The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol 264:228–239

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong LZ (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S (2006) RMD: a rice mutant database for functional analysis of the rice genome. Nucl Acid Res 34:D745–D748

    Article  CAS  Google Scholar 

  • Zou MJ, Guan YC, Ren HB, Zhang F, Chen F (2007) Characterization of alternative splicing products of bZIP transcription factors OsABI5. Biochem Biophys Res Commun 360:307–313

    Article  PubMed  CAS  Google Scholar 

  • Zou MJ, Guan YC, Ren HB, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from projects CEDROME (INCO-CT-2005-015468) for PBFO and CML, the National Natural Science Foundation of China (30821007) and the CAS/SAFEA International Partnership Program for Creative Research Teams (20090491019) for SZ and CML, TF-STRESS (QLK3-CT-2000-00328) for AHM, RNA Seed from the Royal Netherlands Academy of Arts and Sciences (KNAW-CEP 08CDP036) for SZ, PBFO and HS, from the Higher Education Commission (HEC) Pakistan to IH and the Netherlands Organization for Scientific Research (NWO; VICI-grant to HB). We thank Francel Verstappen for his technical support at WUR in The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Ming Liu or Pieter B. F. Ouwerkerk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

11103_2012_9967_MOESM2_ESM.tif

Fig. S1 The copy number of the T-DNA insertion in oshox22-1. Genomic DNA was digested by EcoRI and the HPT cDNA fragment was used as probe in the Southern blot experiment (TIFF 669 kb)

11103_2012_9967_MOESM3_ESM.tif

Fig. S2 Northern blot analysis of Oshox22 expression in transgenic Oshox22 over-expression plants (middle panel). Equal loading of the RNAs was verified by ethidium bromide staining (lower panel). Upper panel: left: phenotypes of the Oshox22-OX plants; right: wild type Zhonghua 11 (ZH11) plant (TIFF 6074 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Haider, I., Kohlen, W. et al. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol 80, 571–585 (2012). https://doi.org/10.1007/s11103-012-9967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9967-1

Keywords

Navigation