Skip to main content
Log in

Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Both drought and high salinity stresses are major abiotic factors that limit the yield of agricultural crops. Transgenic techniques have been regarded as effective ways to improve crops in their tolerance to these abiotic stresses. Functional characterization of genes is the prerequisite to identify candidates for such improvement. Here, we have investigated the biological functions of an Oryza sativa Ribosome-inactivating protein gene 18 (OSRIP18) by ectopically expressing this gene under the control of CaMV 35S promoter in the rice genome. We have generated 11 independent transgenic rice plants and all of them showed significantly increased tolerance to drought and high salinity stresses. Global gene expression changes by Microarray analysis showed that more than 100 probe sets were detected with up-regulated expression abundance while signals from only three probe sets were down-regulated after over-expression of OSRIP18. Most of them were not regulated by drought or high salinity stresses. Our data suggested that the increased tolerance to these abiotic stresses in transgenic plants might be due to up-regulation of some stress-dependent/independent genes and OSRIP18 may be potentially useful in further improving plant tolerance to various abiotic stresses by over-expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Mg :

Megnaporthe grisea

PEG:

Polyethylene glycol

qRT-PCR:

Quantitative real-time RT-PCR

RACE:

Rapid amplification of cDNA ends

RIP:

Ribosome-inactivating proteins

WT:

Wild type

Xoo :

Xanthomonas oryzae pv oryzae

References

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  CAS  Google Scholar 

  • Bass HW, Krawetz JE, Obrian GR, Zinselmeier C, Habben JE, Boston RS (2004) Maize ribosome-inactivating proteins (RIPs) with distinct expression patterns have similar requirements for proenzyme activation. J Exp Bot 55:2219–2233

    Article  PubMed  CAS  Google Scholar 

  • Bieri S, Potrykus I, Fütterer J (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100:755–763

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchannan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 1158–1249

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1:19–22

    Article  CAS  Google Scholar 

  • Desmyter S, Vandenbussche F, Hao Q, Proost P, Peumans WJ, Van Damme EJ (2003) Type-1 ribosome-inactivating protein from iris bulbs: a useful agronomic tool to engineer virus resistance? Plant Mol Biol 51:567–576

    Article  PubMed  CAS  Google Scholar 

  • Ding ZJ, Wu XH, Wang T (2002) The rice tapetum-specific gene RA39 encodes a type I ribosome-inactivating protein. Sex Plant Reprod 15:205–212

    Article  CAS  Google Scholar 

  • Dowd PF, Mehta AD, Boston RS (1998) Relative toxicity of the maize endosperm ribosome-inactivating protein to insects. J Agri Food Chem 46:3775–3779

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Frohman KB, Dush M, Marlin G (1988) Rapid amplification of fulllength cDNAs from rare transcripts: amplification using a single-specific oligonucleotide primers. Proc Natl Acad Sci USA 85:8998–9002

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse A, Barbieri L, Stirpe F, Croy RRD (1990) Effects of ribosome inactivating proteins on insect development—differences between Lepidoptera and Coleoptera. Entomol Exp Appl 54:43–51

    Article  CAS  Google Scholar 

  • Girbes T, de Torre C, Iglesias R, Ferreras JM, Mendez E (1996) RIP for viruses. Nature 379:777–778

    Article  CAS  Google Scholar 

  • Girbes T, Ferreras JM, Arias FJ, Stripe F (2004) Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. MiniRev Med Chem 4:467–482

    Google Scholar 

  • Guo X, Ren Z, Zhao Y, Zhang H (2003) Over-expression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Perez Y, de Torre C, Ferreras JM, Antolin P, Jimenez P, Rojo MA, Mendez E, Girbes T (2005) Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. J Exp Bot 56:1675–1684

    Article  PubMed  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Jiang SY, Ramachandran S (2010) Improving crop tolerance to abiotic stresses by plant biotechnology, chapter 15. In: Kumar A, Roy S (eds) Applications of plant biotechnology: in vitro propagation, plant transformations and secondary metabolite production. I.K. International Publishing House, New Delhi, pp 286–309

  • Jiang SY, Bachmann D, La H, Ma Z, Venkatesh PN, Ramamoorthy R, Ramachandran S (2007) Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Mol Biol 65:385–402

    Article  PubMed  CAS  Google Scholar 

  • Jiang SY, Ramamoorthy R, Bhalla R, Luan HF, Venkatesh PN, Cai M, Ramachandran S (2008) Genome-wide survey of the RIP domain family in Oryza sativa and their expression profiles under various abiotic and biotic stresses. Plant Mol Biol 67:603–614

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Duan X, Wu R, Seok SJ, Boston RS, Jang IC, Eun MY, Nahm BH (1999) Molecular and genetic analysis of transgenic rice plants expressing the ribosome inactivating protein b-32 gene and the herbicide resistance bar gene. Mol Breed 5:85–94

    Article  CAS  Google Scholar 

  • Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T (2011) EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot. doi:10.1093/jxb/err236

  • Kumar MA, Timm DE, Neet KE, Owen WG, Peumans WJ, Rao AG (1993) Characterization of the lectin from the bulbs of Eranthis hyemalis (winter aconite) as an inhibitor of protein synthesis. J Biol Chem 268:25176–25183

    PubMed  CAS  Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  PubMed  CAS  Google Scholar 

  • Lauchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa P, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, pp 1–32

    Chapter  Google Scholar 

  • Lodge JK, Kaniewski WK, Tumer NE (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci USA 90:7089–7093

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Jach G, Tommerup H, Mundy J, Schell J (1992) Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Nat Biotechnol 10:305–308

    Article  CAS  Google Scholar 

  • Maddaloni M, Forlani F, Balmas V, Donini G, Stasse L, Corazza L, Motto M (1997) Tolerance to the fungal pathogen Rhizoctonia solani AG4 of transgenic tobacco expressing the maize ribosome-inactivating protein b-32. Transgenic Res 6:393–402

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Meskiene I, Bögre L, Glaser W, Balog J, Brandstötter M, Zwerger K, Ammerer G, Hirt H (1998) MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc Natl Acad Sci USA 95:1938–1943

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Narasimha Chary S, Bultema RL, Packard CE, Crowell DN (2002) Prenylcysteine alpha-carboxyl methyltransferase expression and function in Arabidopsis thaliana. Plant J 32:735–747

    Article  PubMed  CAS  Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R, Ranty B (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J 38:410–420

    Article  PubMed  CAS  Google Scholar 

  • Reddy PR, Goss JA (1971) Effect of salinity on pollen I. Pollen viability as altered by increasing osmotic pressure with NaCl, MgCl2, and CaCl2. Am J Bot 58:721–725

    Article  CAS  Google Scholar 

  • Rippmann JF, Michalowski CB, Nelson DE, Bohnert HJ (1997) Induction of a ribosome-inactivating protein upon environmental stress. Plant Mol Biol 35:701–709

    Article  PubMed  CAS  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  PubMed  CAS  Google Scholar 

  • Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sex Plant Reprod 10:67–73

    Article  Google Scholar 

  • Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJ, Peumans WJ, Korban SS (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Gorini P, Valbonesi P, Bolognesi A, Polito L (1996) Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett 382:309–312

    Article  PubMed  CAS  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137:949–960

    Article  PubMed  CAS  Google Scholar 

  • Vivanco JM, Savary BJ, Flores HE (1999) Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the Andean crop Mirabilis expansa. Plant Physiol 119:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Huang MX, Xu Y, Zhang XS, Chen F (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357

    Article  CAS  Google Scholar 

  • Xu J, Wang H, Fan J (2007) Expression of a ribosome-inactivating protein gene in bitter melon is induced by Sphaerotheca fuliginea and abiotic stimuli. Biotechnol Lett 29:1605–1610

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yuan H, Ming X, Wang L, Hu P, An C, Chen Z (2002) Expression of a gene encoding trichosanthin in transgenic rice plants enhances resistance to fungus blast disease. Plant Cell Rep 20:992–998

    Article  CAS  Google Scholar 

  • Zhang Y, Xu W, Li Z, Deng XW, Wu W, Xue Y (2008) F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol 148:2121–2133

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Li XD, Yuan JZ, Tang ZH, Liu WY (2000) Toxicity of cinnamomin—a new type II ribosome-inactivating protein to bollworm and mosquito. Insect Biochem Mol Biol 30:259–264

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko O, Uckun F, Hur Y, Chet I, Tumer N (1997) Plant resistance to fungal infection induced by nontoxic pokeweed antiviral protein mutants. Nat Biotechnol 15:992–996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Ramachandran.

Additional information

Shu-Ye Jiang and Ritu Bhalla contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, SY., Bhalla, R., Ramamoorthy, R. et al. Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res 21, 785–795 (2012). https://doi.org/10.1007/s11248-011-9568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9568-9

Keywords

Navigation