Skip to main content

Advertisement

Log in

Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2022: positron emission tomography, computed tomography, and magnetic resonance

  • REVIEW ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

In 2022, the Journal of Nuclear Cardiology® published many excellent original research articles and editorials focusing on imaging in patients with cardiovascular disease. In this review of 2022, we summarize a selection of articles to provide a concise recap of major advancements in the field. In the first part of this 2-part series, we addressed publications pertaining to single-photon emission computed tomography. In this second part, we focus on positron emission tomography, cardiac computed tomography, and cardiac magnetic resonance. We specifically review advances in imaging of non-ischemic cardiomyopathy, cardio-oncology, infectious disease cardiac manifestations, atrial fibrillation, detection and prognostication of atherosclerosis, and technical improvements in the field. We hope that this review will be useful to readers as a reminder to articles they have seen during the year as well as ones they have missed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CA:

Cardiac amyloidosis

CMR:

Cardiac magnetic resonance

CS:

Cardiac sarcoidosis

CT:

Computer tomography

CAD:

Coronary artery disease

ECV:

Extracellular volume

FDG:

18F-fluorodeoxyglucose

HIV:

Human immunodeficiency virus

IE:

Infectious endocarditis

LGE:

Late gadolinium enhancement

LVEF:

Left ventricular ejection fraction

MACE:

Major adverse cardiovascular events

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

MPI:

Myocardial perfusion imaging

PET:

Positron emission tomography

SPECT:

Single photon emission computed tomography

References

  1. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2020: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2021;28:2100‐11. https://doi.org/10.1007/s12350-021-02685-9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging. J Nucl Cardiol 2015;22:507‐12. https://doi.org/10.1007/s12350-014-0045-8.

    Article  PubMed  Google Scholar 

  3. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2018. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2019;26:524‐35. https://doi.org/10.1007/s12350-018-01558-y.

    Article  PubMed  Google Scholar 

  4. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2019: Positron emission tomography, computed tomography and magnetic resonance. J Nucl Cardiol 2020;27:921‐30. https://doi.org/10.1007/s12350-020-02151-y.

    Article  PubMed  Google Scholar 

  5. AlJaroudi W, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2016. Part 1 of 2: Positron emission tomography, computed tomography and magnetic resonance. J Nucl Cardiol 2017;24:649‐56. https://doi.org/10.1007/s12350-017-0820-4.

    Article  PubMed  Google Scholar 

  6. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2018;25:320‐30. https://doi.org/10.1007/s12350-017-1120-8.

    Article  PubMed  Google Scholar 

  7. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2016;23:122‐30. https://doi.org/10.1007/s12350-015-0319-9.

    Article  PubMed  Google Scholar 

  8. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2019: Single-photon emission computed tomography. J Nucl Cardiol 2020;27:1171‐9. https://doi.org/10.1007/s12350-020-02167-4.

    Article  PubMed  Google Scholar 

  9. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2017. Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2018;25:1390‐9. https://doi.org/10.1007/s12350-018-1266-z.

    Article  PubMed  Google Scholar 

  10. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2016: Part 2 of 2-myocardial perfusion imaging. J Nucl Cardiol 2017;24:1190‐9. https://doi.org/10.1007/s12350-017-0875-2.

    Article  PubMed  Google Scholar 

  11. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2014: Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2015;22:714‐9. https://doi.org/10.1007/s12350-015-0144-1.

    Article  PubMed  Google Scholar 

  12. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2015-part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2016;23:493‐8. https://doi.org/10.1007/s12350-016-0444-0.

    Article  PubMed  Google Scholar 

  13. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2022: Single photon emission computed tomography. J Nucl Cardiol 2023. https://doi.org/10.1007/s12350-023-03216-4.

    Article  PubMed  Google Scholar 

  14. Kim SJ, Pak K, Kim K. Diagnostic performance of F-18 FDG PET for detection of cardiac sarcoidosis; A systematic review and meta-analysis. J Nucl Cardiol 2020;27:2103‐15. https://doi.org/10.1007/s12350-018-01582-y.

    Article  PubMed  Google Scholar 

  15. Miller RJH, Cadet S, Pournazari P, Pope A, Kransdorf E, Hamilton MA. Quantitative assessment of cardiac hypermetabolism and perfusion for diagnosis of cardiac sarcoidosis. J Nucl Cardiol 2022;29:86‐96. https://doi.org/10.1007/s12350-020-02201-5.

    Article  PubMed  Google Scholar 

  16. Brunken RC. Is quantitative fluorine-18 fluorodeoxyglucose PET image analysis the key to Identify cardiac sarcoidosis? J Nucl Cardiol 2022;29:97‐100. https://doi.org/10.1007/s12350-020-02272-4.

    Article  PubMed  Google Scholar 

  17. Smedema JP, Snoep G, van Kroonenburgh MPG, van Geuns RJ, Dassen WRM, Gorgels APM, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol 2005;45:1683‐90. https://doi.org/10.1016/j.jacc.2005.01.047.

    Article  PubMed  Google Scholar 

  18. Bokhari S, Sheikh T. Cardiac sarcoidosis: Advantages and limitations of advanced cardiac imaging. J Nucl Cardiol 2022;29:2145‐8. https://doi.org/10.1007/s12350-021-02757-w.

    Article  PubMed  Google Scholar 

  19. Okune M, Yasuda M, Soejima N, Kagioka Y, Kakehi K, Kawamura T, et al. Diagnostic utility of fusion 18F-fluorodeoxyglucose positron emission tomography/cardiac magnetic resonance imaging in cardiac sarcoidosis. J Nucl Cardiol 2022;29:753‐64. https://doi.org/10.1007/s12350-020-02359-y.

    Article  PubMed  Google Scholar 

  20. Nappi C, Ponsiglione A, Imbriaco M, Cuocolo A. 18F-FDG PET/CMR in cardiac sarcoidosis: A wild card in the deck? J Nucl Cardiol 2022;29:765‐7. https://doi.org/10.1007/s12350-020-02427-3.

    Article  PubMed  Google Scholar 

  21. Patel VN, Pieper JA, Poitrasson-Rivière A, Kopin D, Cascino T, Aaronson K, et al. The prognostic value of positron emission tomography in the evaluation of suspected cardiac sarcoidosis. J Nucl Cardiol 2022;29:2460‐70. https://doi.org/10.1007/s12350-021-02780-x.

    Article  PubMed  Google Scholar 

  22. Divakaran S, Blankstein R. FDG PET imaging in suspected cardiac sarcoidosis: Diagnosis vs. prognosis. J Nucl Cardiol 2022;29:2471‐3. https://doi.org/10.1007/s12350-021-02809-1.

    Article  PubMed  Google Scholar 

  23. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016;133:2404‐12. https://doi.org/10.1161/CIRCULATIONAHA.116.021612.

    Article  CAS  PubMed  Google Scholar 

  24. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol 2019;26:2065‐123. https://doi.org/10.1007/s12350-019-01760-6.

    Article  PubMed  Google Scholar 

  25. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-diagnostic criteria and appropriate utilization. J Nucl Cardiol 2020;27:659‐73. https://doi.org/10.1007/s12350-019-01761-5.

    Article  PubMed  Google Scholar 

  26. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. Addendum to ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol 2021;28:1769‐74. https://doi.org/10.1007/s12350-020-02455-z.

    Article  PubMed  Google Scholar 

  27. Andrews JPM, Trivieri MG, Everett R, Spath N, MacNaught G, Moss AJ, et al. 18F-fluoride PET/MR in cardiac amyloid: A comparison study with aortic stenosis and age- and sex-matched controls. J Nucl Cardiol 2022;29:741‐9. https://doi.org/10.1007/s12350-020-02356-1.

    Article  PubMed  Google Scholar 

  28. Cuddy SAM. Editorial: 18F-fluoride PET/MR in cardiac amyloid; simple addition versus synergy? J Nucl Cardiol 2022;29:750‐2. https://doi.org/10.1007/s12350-020-02437-1.

    Article  PubMed  Google Scholar 

  29. Papathanasiou M, Kessler L, Carpinteiro A, Hagenacker T, Nensa F, Umutlu L, et al. 18F-flutemetamol positron emission tomography in cardiac amyloidosis. J Nucl Cardiol 2022;29:779‐89. https://doi.org/10.1007/s12350-020-02363-2.

    Article  PubMed  Google Scholar 

  30. Singh V, Dorbala S. Positron emission tomography for cardiac amyloidosis: Timing matters! J Nucl Cardiol 2022;29:790‐7. https://doi.org/10.1007/s12350-021-02524-x.

    Article  PubMed  Google Scholar 

  31. Zhang LX, Martineau P, Finnerty V, Giraldeau G, Parent MC, Harel F, et al. Comparison of 18F-sodium fluoride positron emission tomography imaging and 99mTc-pyrophosphate in cardiac amyloidosis. J Nucl Cardiol 2022;29:1132‐40. https://doi.org/10.1007/s12350-020-02425-5.

    Article  PubMed  Google Scholar 

  32. Santarelli MF, Genovesi D, Scipioni M, Positano V, Favilli B, Giorgetti A, et al. Cardiac amyloidosis characterization by kinetic model fitting on [18F]florbetaben PET images. J Nucl Cardiol 2022;29:1919‐32. https://doi.org/10.1007/s12350-021-02608-8.

    Article  CAS  PubMed  Google Scholar 

  33. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687‐96. https://doi.org/10.1161/01.CIR.76.3.687.

    Article  CAS  PubMed  Google Scholar 

  34. Shi X, Liu S, Lin X, Zhao X, Fang L, Ding J, et al. Characterization of myocardial oxidative metabolism and myocardial external efficiency in high-risk alcohol cardiotoxicity and alcoholic cardiomyopathy via dynamic 11C-Acetate positron emission tomography. J Nucl Cardiol 2022;29:278‐88. https://doi.org/10.1007/s12350-020-02214-0.

    Article  PubMed  Google Scholar 

  35. Stendahl JC, Sinusas AJ. 11C-acetate PET: A powerful tool to analyze metabolic and functional changes in the heart related to alcohol consumption. J Nucl Cardiol 2022;29:289‐92. https://doi.org/10.1007/s12350-020-02268-0.

    Article  PubMed  Google Scholar 

  36. Hoen B, Duval X. Clinical practice. Infective endocarditis. N Engl J Med 2013;368:1425‐33. https://doi.org/10.1056/NEJMcp1206782.

    Article  CAS  PubMed  Google Scholar 

  37. Abikhzer G, Martineau P, Grégoire J, Finnerty V, Harel F, Pelletier-Galarneau M. [18F]FDG-PET CT for the evaluation of native valve endocarditis. J Nucl Cardiol 2022;29:158‐65. https://doi.org/10.1007/s12350-020-02092-6.

    Article  PubMed  Google Scholar 

  38. Aghayev A. Utilization of FDG-PET/CT in the diagnosis of native valve endocarditis: There is a hope, but we need more data! J Nucl Cardiol 2022;29:3455‐7. https://doi.org/10.1007/s12350-020-02308-9.

    Article  PubMed  Google Scholar 

  39. Primus CP, Clay TA, McCue MS, Wong K, Uppal R, Ambekar S, et al. 18F-FDG PET/CT improves diagnostic certainty in native and prosthetic valve infective endocarditis over the modified Duke criteria. J Nucl Cardiol 2022;29:2119‐28. https://doi.org/10.1007/s12350-021-02689-5.

    Article  PubMed  Google Scholar 

  40. Zogala D. FDG PET in infective endocarditis: There are still horizons to conquer. J Nucl Cardiol 2022;29:2129‐31. https://doi.org/10.1007/s12350-021-02756-x.

    Article  PubMed  Google Scholar 

  41. Sag SJM, Menhart K, Grosse J, Hitzenbichler F, Hanses F, Mohr A, et al. Diagnostic value of FDG PET/CT imaging in patients with surgically managed infective endocarditis: Results of a retrospective analysis at a tertiary center. J Nucl Cardiol 2022;29:1191‐204. https://doi.org/10.1007/s12350-020-02457-x.

    Article  PubMed  Google Scholar 

  42. Tlili G, Amraoui S, Mesguich C, Rivière A, Bordachar P, Hindié E, et al. High performances of (18)F-fluorodeoxyglucose PET-CT in cardiac implantable device infections: A study of 40 patients. J Nucl Cardiol 2015;22:787‐98. https://doi.org/10.1007/s12350-015-0067-x.

    Article  PubMed  Google Scholar 

  43. Jerónimo A, Olmos C, Vilacosta I, Ortega-Candil A, Rodríguez-Rey C, Pérez-Castejón MJ, et al. Accuracy of 18F-FDG PET/CT in patients with the suspicion of cardiac implantable electronic device infections. J Nucl Cardiol 2022;29:594‐608. https://doi.org/10.1007/s12350-020-02285-z.

    Article  PubMed  Google Scholar 

  44. Piekarski E, Mahida B, Rouzet F, Le Guludec D. FDG PET/CT in CIEDs infection: Don’t wait any longer! J Nucl Cardiol 2022;29:609‐11. https://doi.org/10.1007/s12350-020-02377-w.

    Article  PubMed  Google Scholar 

  45. Gazzilli M, Albano D, Lucchini S, Peli A, Cerudelli E, Bertagna F, et al. New criteria for the diagnosis of infective endocarditis using 18F-FDG PET/CT imaging. J Nucl Cardiol 2022;29:2188‐94. https://doi.org/10.1007/s12350-021-02663-1.

    Article  PubMed  Google Scholar 

  46. Erba PA, Israel O. Preparing for the next vintage in IE. J Nucl Cardiol 2022;29:2195‐6. https://doi.org/10.1007/s12350-021-02746-z.

    Article  PubMed  Google Scholar 

  47. Germaini M, Boursier C, Goehringer F, Selton-Suty C, Lefevre B, Roch V, et al. The detection of infectious endocarditis may be enhanced by a repeat FDG-PET while maintaining patients on a ketogenic diet. J Nucl Cardiol 2022;29:3256‐62. https://doi.org/10.1007/s12350-022-02921-w.

    Article  PubMed  Google Scholar 

  48. Mikail N, Hyafil F. Turning the heart off: Give it a second try? J Nucl Cardiol 2022;29:3263‐6. https://doi.org/10.1007/s12350-022-03013-5.

    Article  PubMed  Google Scholar 

  49. Alonso A, Barnes AE, Guest JL, Shah A, Shao IY, Marconi V. HIV infection and incidence of cardiovascular diseases: An analysis of a large healthcare database. J Am Heart Assoc 2019;8:e012241. https://doi.org/10.1161/JAHA.119.012241.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Freiberg MS, Chang CCH, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med 2013;173:614‐22. https://doi.org/10.1001/jamainternmed.2013.3728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sico JJ, Chang CCH, So-Armah K, Justice AC, Hylek E, Skanderson M, et al. HIV status and the risk of ischemic stroke among men. Neurology 2015;84:1933. https://doi.org/10.1212/WNL.0000000000001560.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Taglieri N, Bonfiglioli R, Bon I, Malosso P, Corovic A, Bruno M, et al. Pattern of arterial inflammation and inflammatory markers in people living with HIV compared with uninfected people. J Nucl Cardiol 2022;29:1566‐75. https://doi.org/10.1007/s12350-020-02522-5.

    Article  PubMed  Google Scholar 

  53. Boczar KE, Faller E, Zeng W, Wang J, Small GR, Corrales-Medina VF, et al. Anti-inflammatory effect of rosuvastatin in patients with HIV infection: An FDG-PET pilot study. J Nucl Cardiol 2022;29:3057‐68. https://doi.org/10.1007/s12350-021-02830-4.

    Article  PubMed  Google Scholar 

  54. Nensa F, Tezgah E, Poeppel TD, Jensen CJ, Schelhorn J, Köhler J, et al. Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: A pilot study. J Nucl Med 2015;56:255‐60. https://doi.org/10.2967/jnumed.114.147744.

    Article  CAS  PubMed  Google Scholar 

  55. Shao D, Wang SX, Liang CH, Gao Q. Differentiation of malignant from benign heart and pericardial lesions using positron emission tomography and computed tomography. J Nucl Cardiol 2011;18:668‐77. https://doi.org/10.1007/s12350-011-9398-4.

    Article  PubMed  Google Scholar 

  56. Rahbar K, Seifarth H, Schäfers M, Stegger L, Hoffmeier A, Spieker T, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med 2012;53:856‐63. https://doi.org/10.2967/jnumed.111.095364.

    Article  CAS  PubMed  Google Scholar 

  57. Yin H, Mao W, Tan H, Zhu N, Wan Q, Shi J, et al. Role of 18F-FDG PET/CT imaging in cardiac and pericardial masses. J Nucl Cardiol 2022;29:1293‐303. https://doi.org/10.1007/s12350-020-02510-9.

    Article  PubMed  Google Scholar 

  58. Bernhard B, Gräni C. 18F-FDG PET/CT imaging in the workup of cardiac and pericardial masses. J Nucl Cardiol 2022;29:3466‐8. https://doi.org/10.1007/s12350-021-02539-4.

    Article  PubMed  Google Scholar 

  59. Aghayev A, Cheezum MK, Steigner ML, Mousavi N, Padera R, Barac A, et al. Multimodality imaging to distinguish between benign and malignant cardiac masses. J Nucl Cardiol 2022;29:1504‐17. https://doi.org/10.1007/s12350-021-02790-9.

    Article  PubMed  Google Scholar 

  60. Rischpler C, Seifert R. Combined PET and MRI for the masses!: At least for the cardiac ones. J Nucl Cardiol 2022;29:1518‐9. https://doi.org/10.1007/s12350-021-02881-7.

    Article  PubMed  Google Scholar 

  61. Maleszewski JJ, Bois MC, Bois JP, Young PM, Stulak JM, Klarich KW. Neoplasia and the heart: Pathological review of effects with clinical and radiological correlation. J Am Coll Cardiol 2018;72:202‐27. https://doi.org/10.1016/j.jacc.2018.05.026.

    Article  PubMed  Google Scholar 

  62. Colin GC, Symons R, Dymarkowski S, Gerber B, Bogaert J. Value of CMR to differentiate cardiac angiosarcoma from cardiac lymphoma. JACC Cardiovasc Imaging 2015;8:744‐6. https://doi.org/10.1016/j.jcmg.2014.08.011.

    Article  PubMed  Google Scholar 

  63. Liu E, Huang J, Dong H, Chen Z, Liu C, Xie Q, et al. Diagnostic challenges in primary cardiac lymphoma, the opportunity of 18F-FDG PET/CT integrated with contrast-enhanced CT. J Nucl Cardiol 2022;29:2378‐89. https://doi.org/10.1007/s12350-021-02723-6.

    Article  PubMed  Google Scholar 

  64. Camoni L, Albano D. Contrast-enhanced 18F-FDG PET/CT to differentiate primary cardiac lymphoma from primary cardiac angiosarcoma. J Nucl Cardiol 2022;29:2390‐2. https://doi.org/10.1007/s12350-021-02767-8.

    Article  PubMed  Google Scholar 

  65. Yuan H, Qiu J, Chiu KWH, Chan LWC, Zhang F, Wei X, et al. PET/CT morphology and cardiac conduction disorders help discriminate primary cardiac lymphoma from primary cardiac sarcoma. J Nucl Cardiol 2022;29:2866‐77. https://doi.org/10.1007/s12350-022-03042-0.

    Article  PubMed  Google Scholar 

  66. Calabretta R, Hacker M. A PET-derived tumor expansion pattern to differentiate between primary cardiac lymphoma from primary cardiac sarcoma. J Nucl Cardiol 2022;29:2878‐80. https://doi.org/10.1007/s12350-022-03097-z.

    Article  PubMed  Google Scholar 

  67. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 2016;37:2768‐801. https://doi.org/10.1093/eurheartj/ehw211.

    Article  PubMed  Google Scholar 

  68. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2014;27:911‐39. https://doi.org/10.1016/j.echo.2014.07.012.

    Article  PubMed  Google Scholar 

  69. Divakaran S, Caron JP, Zhou W, Hainer J, Bibbo CF, Skali H, et al. Coronary vasomotor dysfunction portends worse outcomes in patients with breast cancer. J Nucl Cardiol 2022;29:3072‐81. https://doi.org/10.1007/s12350-021-02825-1.

    Article  PubMed  Google Scholar 

  70. Osborne MT, Grewal S, Neilan TG. Call on the reserve: Coronary vasomotor dysfunction is a potential biomarker of cardiovascular risk in patients with breast cancer. J Nucl Cardiol 2022;29:3082‐5. https://doi.org/10.1007/s12350-021-02831-3.

    Article  PubMed  Google Scholar 

  71. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet Lond Engl 2014;383:705‐13. https://doi.org/10.1016/S0140-6736(13)61754-7.

    Article  Google Scholar 

  72. Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: A novel marker of plaque biology. J Am Coll Cardiol 2012;59:1539‐48. https://doi.org/10.1016/j.jacc.2011.12.037.

    Article  CAS  PubMed  Google Scholar 

  73. Hayrapetian A, Berenji GR, Nguyen KL, Li Y. 18F-sodium fluoride uptake is associated with severity of atherosclerotic stenosis in stable ischemic heart disease. J Nucl Cardiol 2021;28:3058‐66. https://doi.org/10.1007/s12350-020-02238-6.

    Article  PubMed  Google Scholar 

  74. Osborne MT, Abbasi TA, Albaghdadi MS. Narrowing in on a PET tracer that characterizes coronary atheroma: 18F-NaF uptake is increased in stenotic coronary artery disease. J Nucl Cardiol 2021;28:3067‐9. https://doi.org/10.1007/s12350-020-02279-x.

    Article  PubMed  Google Scholar 

  75. Laddu DR, Rana JS, Murillo R, Sorel ME, Quesenberry CP, Allen NB, et al. 25-year physical activity trajectories and development of subclinical coronary artery disease as measured by coronary artery calcium: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Mayo Clin Proc 2017;92:1660‐70. https://doi.org/10.1016/j.mayocp.2017.07.016.

    Article  CAS  PubMed  Google Scholar 

  76. Aengevaeren VL, Mosterd A, Braber TL, Prakken NHJ, Doevendans PA, Grobbee DE, et al. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation 2017;136:138‐48. https://doi.org/10.1161/CIRCULATIONAHA.117.027834.

    Article  CAS  PubMed  Google Scholar 

  77. Hsu JJ, Fong F, Patel R, Qiao R, Lo K, Soundia A, et al. Changes in microarchitecture of atherosclerotic calcification assessed by 18F-NaF PET and CT after a progressive exercise regimen in hyperlipidemic mice. J Nucl Cardiol 2021;28:2207‐14. https://doi.org/10.1007/s12350-019-02004-3.

    Article  PubMed  Google Scholar 

  78. Ashwathanarayana AG, Singhal M, Satapathy S, Sood A, Mittal BR, Kumar RM, et al. 18F-NaF PET uptake characteristics of coronary artery culprit lesions in a cohort of patients of acute coronary syndrome with ST-elevation myocardial infarction and chronic stable angina: A hybrid fluoride PET/CTCA study. J Nucl Cardiol 2022;29:558‐68. https://doi.org/10.1007/s12350-020-02284-0.

    Article  PubMed  Google Scholar 

  79. Silva Mendes BI, Oliveira-Santos M, Vidigal Ferreira MJ. Sodium fluoride in cardiovascular disorders: A systematic review. J Nucl Cardiol 2021;28:1461‐73. https://doi.org/10.1007/s12350-019-01832-7.

    Article  PubMed  Google Scholar 

  80. Borges-Rosa J, Oliveira-Santos M, Silva R, da Silva NP, Abrunhosa A, Castelo-Branco M, et al. Cardiac microcalcification burden: Global assessment in high cardiovascular risk subjects with Na[18F]F PET-CT. J Nucl Cardiol 2022;29:1846‐54. https://doi.org/10.1007/s12350-021-02600-2.

    Article  PubMed  Google Scholar 

  81. Fallavollita JA, Heavey BM, Luisi AJ, Michalek SM, Baldwa S, Mashtare TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 2014;63:141‐9. https://doi.org/10.1016/j.jacc.2013.07.096.

    Article  PubMed  Google Scholar 

  82. Wang JZ, Zelt JGE, Kaps N, Lavallee A, Renaud JM, Rotstein B, et al. Does quantification of [11C]meta-hydroxyephedrine and [13N]ammonia kinetics improve risk stratification in ischemic cardiomyopathy. J Nucl Cardiol 2022;29:413‐25. https://doi.org/10.1007/s12350-021-02732-5.

    Article  PubMed  Google Scholar 

  83. Frey SM, Honegger U, Clerc OF, Caobelli F, Haaf P, Zellweger MJ. Left ventricular ejection fraction, myocardial blood flow and hemodynamic variables in adenosine and regadenoson vasodilator 82-rubidium PET. J Nucl Cardiol 2022;29:921‐33. https://doi.org/10.1007/s12350-021-02729-0.

    Article  PubMed  Google Scholar 

  84. Hijazi W, Miller RJH. Developing a framework for evaluating and comparing risk models. J Nucl Cardiol 2023;30:59‐61. https://doi.org/10.1007/s12350-022-03036-y.

    Article  PubMed  Google Scholar 

  85. Nakao R, Nagao M, Yamamoto A, Fukushima K, Watanabe E, Sakai S, et al. Papillary muscle ischemia on high-resolution cine imaging of nitrogen-13 ammonia positron emission tomography: Association with myocardial flow reserve and prognosis in coronary artery disease. J Nucl Cardiol 2022;29:293‐303. https://doi.org/10.1007/s12350-020-02231-z.

    Article  PubMed  Google Scholar 

  86. Aryal SR, Bajaj NS, Bhambhvani PG. Papillary muscle ischemia and myocardial blood flow on N13-ammonia positron emission tomography myocardial perfusion imaging. J Nucl Cardiol 2022;29:304‐6. https://doi.org/10.1007/s12350-020-02336-5.

    Article  PubMed  Google Scholar 

  87. Derlin T, Habermann CR, Lengyel Z, Busch JD, Wisotzki C, Mester J, et al. Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall. J Nucl Med 2011;52:1848‐54. https://doi.org/10.2967/jnumed.111.095869.

    Article  CAS  PubMed  Google Scholar 

  88. Demirdelen S, Mannes PZ, Aral AM, Haddad J, Leers SA, Gomez D, et al. Divergence of acetate uptake in proinflammatory and inflammation-resolving macrophages: Implications for imaging atherosclerosis. J Nucl Cardiol 2022;29:1266‐76. https://doi.org/10.1007/s12350-020-02479-5.

    Article  PubMed  Google Scholar 

  89. Fernández-García V, Boscá L. Use of 11C-acetate PET imaging in the evaluation of advanced atherogenic lesions. J Nucl Cardiol 2022;29:1277‐9. https://doi.org/10.1007/s12350-021-02562-5.

    Article  PubMed  Google Scholar 

  90. Shaukat Ali A, Finnerty V, Harel F, Marquis-Gravel G, Vadeboncoeur A, Pelletier-Galarneau M. Impact of rubidium imaging availability on management of patients with acute chest pain. J Nucl Cardiol 2022;29:3281‐90. https://doi.org/10.1007/s12350-022-02923-8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Thomas M, Thompson RC. The right test for the right patient at the right time. J Nucl Cardiol 2022;29:3291‐2. https://doi.org/10.1007/s12350-022-02973-y.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: Expression of a ventricular-like genomic signature. Circ Res 2005;96:1022‐9. https://doi.org/10.1161/01.RES.0000165480.82737.33.

    Article  CAS  PubMed  Google Scholar 

  93. Santi ND, Wu KY, Redpath CJ, Nery PB, Huang W, Burwash IG, et al. Metabolic activity of the left and right atria are differentially altered in patients with atrial fibrillation and LV dysfunction. J Nucl Cardiol 2022;29:2824‐36. https://doi.org/10.1007/s12350-021-02878-2.

    Article  PubMed  Google Scholar 

  94. Aghayev A. Is glucose metabolism in the atria in patients with atrial fibrillation due to inflammation or remodeling? J Nucl Cardiol 2022;29:2837‐8. https://doi.org/10.1007/s12350-021-02901-6.

    Article  PubMed  Google Scholar 

  95. Maddahi J. Properties of an ideal PET perfusion tracer: New PET tracer cases and data. J Nucl Cardiol 2012;19:S30-37. https://doi.org/10.1007/s12350-011-9491-8.

    Article  PubMed  Google Scholar 

  96. Kero T, Saraste A, Lagerqvist B, Sörensen J, Pikkarainen E, Lubberink M, et al. Quantitative myocardial perfusion response to adenosine and regadenoson in patients with suspected coronary artery disease. J Nucl Cardiol 2022;29:24‐36. https://doi.org/10.1007/s12350-021-02731-6.

    Article  PubMed  Google Scholar 

  97. Nordström J, Harms HJ, Kero T, Ebrahimi M, Sörensen J, Lubberink M. Effect of PET-CT misalignment on the quantitative accuracy of cardiac 15O-water PET. J Nucl Cardiol 2022;29:1119‐28. https://doi.org/10.1007/s12350-020-02408-6.

    Article  PubMed  Google Scholar 

  98. Lee BC. Cardiac 15O-water PET: Does mismatched attenuation correction not matter? J Nucl Cardiol 2022;29:1129‐31. https://doi.org/10.1007/s12350-021-02573-2.

    Article  PubMed  Google Scholar 

  99. Nordström J, Harms HJ, Kero T, Sörensen J, Lubberink M. Influence of patient motion on quantitative accuracy in cardiac 15O-water positron emission tomography. J Nucl Cardiol 2022;29:1742‐52. https://doi.org/10.1007/s12350-021-02550-9.

    Article  PubMed  Google Scholar 

  100. Freitag MT, Bremerich J, Wild D, Haaf P, Zellweger MJ, Caobelli F. Quantitative myocardial perfusion 82Rb-PET assessed by hybrid PET/coronary-CT: Normal values and diagnostic performance. J Nucl Cardiol 2022;29:464‐73. https://doi.org/10.1007/s12350-020-02264-4.

    Article  PubMed  Google Scholar 

  101. Nesterov SV, Knuuti JM. 82Rb-PET MPQ: Do normal values exist? J Nucl Cardiol 2022;29:474‐5. https://doi.org/10.1007/s12350-020-02362-3.

    Article  PubMed  Google Scholar 

  102. Packard RRS, Cooke CD, Van Train KF, Votaw JR, Sayre JW, Lazewatsky JL, et al. Development, diagnostic performance, and interobserver agreement of a 18F-flurpiridaz PET automated perfusion quantitation system. J Nucl Cardiol 2022;29:698‐708. https://doi.org/10.1007/s12350-020-02335-6.

    Article  PubMed  Google Scholar 

  103. Aljizeeri A, Badarin FA, Al-Mallah MH. Automation in nuclear cardiology: Time for flurpiridaz to join the club. J Nucl Cardiol 2022;29:709‐11. https://doi.org/10.1007/s12350-020-02421-9.

    Article  PubMed  Google Scholar 

  104. Chow BJW, Beanlands RS, Lee A, DaSilva JN, deKemp RA, Alkahtani A, et al. Treadmill exercise produces larger perfusion defects than dipyridamole stress N-13 ammonia positron emission tomography. J Am Coll Cardiol 2006;47:411‐6. https://doi.org/10.1016/j.jacc.2005.09.027.

    Article  PubMed  Google Scholar 

  105. Aggarwal NR, Drozdova A, Askew JW, Kemp BJ, Chareonthaitawee P. Feasibility and diagnostic accuracy of exercise treadmill nitrogen-13 ammonia PET myocardial perfusion imaging of obese patients. J Nucl Cardiol 2015;22:1273‐80. https://doi.org/10.1007/s12350-015-0073-z.

    Article  PubMed  Google Scholar 

  106. Harland DR, Galazka PZ, Rasmussen J, Mahlum D, Falk J, Port SC. Feasibility of exercise treadmill 13N-ammonia positron emission tomography myocardial perfusion imaging using an off-site cyclotron. J Nucl Cardiol 2022;29:938‐45. https://doi.org/10.1007/s12350-020-02366-z.

    Article  PubMed  Google Scholar 

  107. Rischpler C, Totzeck M. Are you stressed? J Nucl Cardiol 2019;26:1898‐900. https://doi.org/10.1007/s12350-018-1332-6.

    Article  CAS  PubMed  Google Scholar 

  108. Bakula A, Patriki D, von Felten E, Benetos G, Sustar A, Benz DC, et al. Splenic switch-off as a novel marker for adenosine response in nitrogen-13 ammonia PET myocardial perfusion imaging: Cross-validation against CMR using a hybrid PET/MR device. J Nucl Cardiol 2022;29:1205‐14. https://doi.org/10.1007/s12350-020-02448-y.

    Article  PubMed  Google Scholar 

  109. Moody WE, Arumugam P. Assessment of stress adequacy with adenosine: Does the answer lie in the spleen? J Nucl Cardiol 2022;29:1215‐8. https://doi.org/10.1007/s12350-020-02485-7.

    Article  PubMed  Google Scholar 

  110. Smailovic H, Wilk B, Wisenberg G, Sykes J, Butler J, Hicks J, et al. Simultaneous measurements of myocardial glucose metabolism and extracellular volumes with hybrid PET/MRI using concurrent injections of Gd-DTPA and [18F]FDG. J Nucl Cardiol 2022;29:1304‐14. https://doi.org/10.1007/s12350-020-02486-6.

    Article  CAS  PubMed  Google Scholar 

  111. Wilk B, Smailovic H, Wisenberg G, Sykes J, Butler J, Kovacs M, et al. Tracking the progress of inflammation with PET/MRI in a canine model of myocardial infarction. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2022;29(3):1315–25. https://doi.org/10.1007/s12350-020-02487-5.

    Article  CAS  Google Scholar 

  112. Juneau D, Pelletier-Galarneau M. Assessment of myocardial inflammation post-infarct with PET/MRI: Getting into the nitty-gritty. J Nucl Cardiol 2022;29:1326‐8. https://doi.org/10.1007/s12350-021-02558-1.

    Article  PubMed  Google Scholar 

  113. Armstrong IS, Hayden C, Memmott MJ, Arumugam P. A preliminary evaluation of a high temporal resolution data-driven motion correction algorithm for rubidium-82 on a SiPM PET-CT system. J Nucl Cardiol 2022;29:56‐68. https://doi.org/10.1007/s12350-020-02177-2.

    Article  PubMed  Google Scholar 

  114. Kamani CH, Prior J. Are we good enough in the evaluation of MPI using rubidium82 with PMT PET/CT? A comparison to SiPM PET/CT. J Nucl Cardiol 2022;29:213‐5. https://doi.org/10.1007/s12350-020-02169-2.

    Article  PubMed  Google Scholar 

  115. Armstrong IS, Memmott MJ, Hayden C, Arumugam P. The prevalence of image degradation due to motion in rest-stress rubidium-82 imaging on a SiPM PET-CT system. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2022;29(4):1596–606. https://doi.org/10.1007/s12350-021-02531-y.

    Article  Google Scholar 

  116. Garcia EV, Nye JA. Moving forward with motion reduction, detection and correction in cardiac PET. J Nucl Cardiol 2022;29:1607‐10. https://doi.org/10.1007/s12350-021-02599-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi G. Hage MD, MASNC.

Ethics declarations

Disclosures

Dr. Hage reports grant support from GE Healthcare. Drs. Murphy and Aljaroudy report no disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, J., AlJaroudi, W.A. & Hage, F.G. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2022: positron emission tomography, computed tomography, and magnetic resonance. J. Nucl. Cardiol. 30, 941–954 (2023). https://doi.org/10.1007/s12350-023-03283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-023-03283-7

Keywords

Navigation