Skip to main content

Advertisement

Log in

Divergence of acetate uptake in proinflammatory and inflammation-resolving macrophages: implications for imaging atherosclerosis

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Metabolic divergence of macrophages polarized into different phenotypes represents a mechanistically relevant target for non-invasive characterization of atherosclerotic plaques using positron emission tomography (PET). Carbon-11 (11C)-labeled acetate is a clinically available tracer which accumulates in atherosclerotic plaques, but its biological and clinical correlates in atherosclerosis are undefined.

Methods and results

Histological correlates of 14C-acetate uptake were determined in brachiocephalic arteries of western diet-fed apoE−/− mice. The effect of polarizing stimuli on 14C-acetate uptake was determined by proinflammatory (interferon-γ + lipopolysaccharide) vs inflammation-resolving (interleukin-4) stimulation of murine macrophages and human carotid endarterectomy specimens over 2 days. 14C-acetate accumulated in atherosclerotic regions of arteries. CD68-positive monocytes/macrophages vs smooth muscle actin-positive smooth muscle cells were the dominant cells in regions with high vs low 14C-acetate uptake. 14C-acetate uptake progressively decreased in proinflammatory macrophages to 25.9 ± 4.5% of baseline (P < .001). A delayed increase in 14C-acetate uptake was induced in inflammation-resolving macrophages, reaching to 164.1 ± 21.4% (P < .01) of baseline. Consistently, stimulation of endarterectomy specimens with interferon-γ + lipopolysaccharide decreased 14C-acetate uptake to 66.5 ± 14.5%, while interleukin-4 increased 14C-acetate uptake to 151.5 ± 25.8% compared to non-stimulated plaques (P < .05).

Conclusions

Acetate uptake by macrophages diverges upon proinflammatory and inflammation-resolving stimulation, which may be exploited for immunometabolic characterization of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

18F-FDG:

18F-fluorodeoxyglucose

PET:

Positron emission tomography

IL-1β:

Interleukin-1β

IL-4:

Interleukin-4

IFN-γ:

Interferon-γ

LPS:

Lipopolysaccharide

NOS2:

Nitric oxide synthase-2

References

  1. Ketelhuth DFJ, Lutgens E, Back M, Binder CJ, Van den Bossche J, Daniel C, Dumitriu IE, Hoefer I, Libby P, O’Neill L, Weber C, Evans PC. Immunometabolism and atherosclerosis: Perspectives and clinical significance: A position Paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc Res 2019;115:1385-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koelwyn GJ, Corr EM, Erbay E, Moore KJ. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 2018;19:526-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Russell DG, Huang L, VanderVen BC. Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol 2019;19:291-304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Folco EJ, Sukhova GK, Quillard T, Libby P. Moderate hypoxia potentiates interleukin-1beta production in activated human macrophages. Circ Res 2014;115:875-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Folco EJ, Sheikine Y, Rocha VZ, Christen T, Shvartz E, Sukhova GK, Di Carli MF, Libby P. Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-d-glucose positron emission tomography. J Am Coll Cardiol 2011;58:603-14.

    Article  CAS  PubMed  Google Scholar 

  6. Marsch E, Sluimer JC, Daemen MJ. Hypoxia in atherosclerosis and inflammation. Curr Opin Lipidol 2013;24:393-400.

    Article  CAS  PubMed  Google Scholar 

  7. Marsch E, Theelen TL, Demandt JA, Jeurissen M, van Gink M, Verjans R, Janssen A, Cleutjens JP, Meex SJ, Donners MM, Haenen GR, Schalkwijk CG, Dubois LJ, Lambin P, Mallat Z, Gijbels MJ, Heemskerk JW, Fisher EA, Biessen EA, Janssen BJ, Daemen MJ, Sluimer JC. Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis. Arterioscler Thromb Vasc Biol 2014;34:2545-53.

    Article  CAS  PubMed  Google Scholar 

  8. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LA. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 2013;496:238-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tavakoli S, Downs K, Short JD, Nguyen HN, Lai Y, Jerabek PA, Goins B, Toczek J, Sadeghi MM, Asmis R. Characterization of macrophage polarization states using combined measurement of 2-deoxyglucose and glutamine accumulation: Implications for imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 2017;37:1840-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tavakoli S, Zamora D, Ullevig S, Asmis R. Bioenergetic profiles diverge during macrophage polarization: Implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J Nucl Med 2013;54:1661-7.

    Article  CAS  PubMed  Google Scholar 

  11. Ngoi NYL, Eu JQ, Hirpara J, Wang L, Lim JSJ, Lee SC, Lim YC, Pervaiz S, Goh BC, Wong ALA. Targeting cell metabolism as cancer therapy. Antioxid Redox Signal 2020;32:285-308.

    Article  CAS  PubMed  Google Scholar 

  12. Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol 2017;24:1161-80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tavakoli S, Short JD, Downs K, Nguyen HN, Lai Y, Zhang W, Jerabek P, Goins B, Sadeghi MM, Asmis R. Differential regulation of macrophage glucose metabolism by macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: Implications for (18)F FDG PET imaging of vessel wall inflammation. Radiology 2017;283:87-97.

    Article  PubMed  Google Scholar 

  14. Al-Mashhadi RH, Tolbod LP, Bloch LO, Bjorklund MM, Nasr ZP, Al-Mashhadi Z, Winterdahl M, Frokiaer J, Falk E, Bentzon JF. (18)fluorodeoxyglucose accumulation in arterial tissues determined by PET signal analysis. J Am Coll Cardiol 2019;74:1220-32.

    Article  CAS  PubMed  Google Scholar 

  15. Tavakoli S, Vashist A, Sadeghi MM. Molecular imaging of plaque vulnerability. J Nucl Cardiol 2014;21:1112-28; quiz 1129.

  16. Tavakoli S. Technical considerations for quantification of (18)F-FDG uptake in carotid atherosclerosis. J Nucl Cardiol 2019;26:894-8.

    Article  PubMed  Google Scholar 

  17. Derlin T, Habermann CR, Lengyel Z, Busch JD, Wisotzki C, Mester J, Pavics L. Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall. J Nucl Med 2011;52:1848-54.

    Article  CAS  PubMed  Google Scholar 

  18. Yamasaki K, Yamashita A, Zhao Y, Shimizu Y, Nishii R, Kawai K, Tamaki N, Zhao S, Asada Y, Kuge Y. In vitro uptake and metabolism of [(14)C]acetate in rabbit atherosclerotic arteries: Biological basis for atherosclerosis imaging with [(11)C]acetate. Nucl Med Biol 2018;56:21-5.

    Article  CAS  PubMed  Google Scholar 

  19. Dunphy MPS, Harding JJ, Venneti S, Zhang H, Burnazi EM, Bromberg J, Omuro AM, Hsieh JJ, Mellinghoff IK, Staton K, Pressl C, Beattie BJ, Zanzonico PB, Gerecitano JF, Kelsen DP, Weber W, Lyashchenko SK, Kung HF, Lewis JS. In vivo pet assay of tumor glutamine flux and metabolism: In-human trial of (18)F-(2S, 4R)-4-fluoroglutamine. Radiology 2018;287:667-75.

    Article  PubMed  Google Scholar 

  20. Karanikas G, Beheshti M. (1)(1)C-acetate pet/ct imaging: Physiologic uptake, variants, and pitfalls. PET Clin 2014;9:339-44.

    Article  PubMed  Google Scholar 

  21. Porenta G, Cherry S, Czernin J, Brunken R, Kuhle W, Hashimoto T, Schelbert HR. Noninvasive determination of myocardial blood flow, oxygen consumption and efficiency in normal humans by carbon-11 acetate positron emission tomography imaging. Eur J Nucl Med 1999;26:1465-74.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008. https://doi.org/10.1002/0471142735.im1401s83.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gomez D, Shankman LS, Nguyen AT, Owens GK. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat Methods 2013;10:171-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erbel C, Okuyucu D, Akhavanpoor M, Zhao L, Wangler S, Hakimi M, Doesch A, Dengler TJ, Katus HA, Gleissner CA. A human ex vivo atherosclerotic plaque model to study lesion biology. J Vis Exp 2014. https://doi.org/10.3791/50542.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lebedeva A, Vorobyeva D, Vagida M, Ivanova O, Felker E, Fitzgerald W, Danilova N, Gontarenko V, Shpektor A, Vasilieva E, Margolis L. Ex vivo culture of human atherosclerotic plaques: A model to study immune cells in atherogenesis. Atherosclerosis 2017;267:90-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balmer ML, Ma EH, Bantug GR, Grahlert J, Pfister S, Glatter T, Jauch A, Dimeloe S, Slack E, Dehio P, Krzyzaniak MA, King CG, Burgener AV, Fischer M, Develioglu L, Belle R, Recher M, Bonilla WV, Macpherson AJ, Hapfelmeier S, Jones RG, Hess C. Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 2016;44:1312-24.

    Article  CAS  PubMed  Google Scholar 

  27. Petersen C, Nielsen MD, Andersen ES, Basse AL, Isidor MS, Markussen LK, Viuff BM, Lambert IH, Hansen JB, Pedersen SF. MCT1 and MCT4 expression and lactate flux activity increase during white and brown adipogenesis and impact adipocyte metabolism. Sci Rep 2017;7:13101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jackson CL, Bennett MR, Biessen EA, Johnson JL, Krams R. Assessment of unstable atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2007;27:714-20.

    Article  CAS  PubMed  Google Scholar 

  29. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM. Advanced atherosclerotic lesions in the innominate artery of the Apoe knockout mouse. Arterioscler Thromb Vasc Biol 2000;20:2587-92.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson JL, Jackson CL. Atherosclerotic plaque rupture in the apolipoprotein e knockout mouse. Atherosclerosis 2001;154:399-406.

    Article  CAS  PubMed  Google Scholar 

  31. Sadeghi MM. (18)F-FDG PET and vascular inflammation: Time to refine the paradigm? J Nucl Cardiol 2015;22:319-24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guillermier C, Doherty SP, Whitney AG, Babaev VR, Linton MF, Steinhauser ML, Brown JD. Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis. JCI Insight 2019. https://doi.org/10.1172/jci.insight.128528.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bose S, Ramesh V, Locasale JW. Acetate metabolism in physiology, cancer, and beyond. Trends Cell Biol 2019;29:695-703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ, Chawla A. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 2006;4:13-24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tabas I, Bornfeldt KE. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ Res 2020;126:1209-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ, Liu G. The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem 2015;290:46-55.

    Article  CAS  PubMed  Google Scholar 

  37. Puchalska P, Huang X, Martin SE, Han X, Patti GJ, Crawford PA. Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments. iScience 2018;9:298-313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cumming BM, Addicott KW, Adamson JH, Steyn AJ. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. eLife 2018. https://doi.org/10.7554/eLife.39169.001.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ, Driggers EM, Artyomov MN. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015;42:419-30.

    Article  CAS  PubMed  Google Scholar 

  40. Howard CF Jr. Lipogenesis from glucose-2-14 C and acetate-1-14 C in aorta. J Lipid Res 1971;12:725-30.

    Article  CAS  PubMed  Google Scholar 

  41. Day AJ, Wilkinson GK. Incorporation of 14-C-labeled acetate into lipid by isolated foam cells and by atherosclerotic arterial intima. Circ Res 1967;21:593-600.

    Article  CAS  PubMed  Google Scholar 

  42. Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ Res 2016;119:414-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990;81:1594-605.

    Article  CAS  PubMed  Google Scholar 

  44. Sun KT, Chen K, Huang SC, Buxton DB, Hansen HW, Kim AS, Siegel S, Choi Y, Muller P, Phelps ME, Schelbert HR. Compartment model for measuring myocardial oxygen consumption using [1-11C]acetate. J Nucl Med 1997;38:459-66.

    CAS  PubMed  Google Scholar 

  45. Nesterov SV, Turta O, Han C, Maki M, Lisinen I, Tuunanen H, Knuuti J. C-11 acetate has excellent reproducibility for quantification of myocardial oxidative metabolism. Eur Heart J Cardiovasc Imaging 2015;16:500-6.

    Article  PubMed  Google Scholar 

  46. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, Group CT. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017;377:1119-31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Tavakoli MD, PhD.

Ethics declarations

Disclosures

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding

This study was supported by grants from National Institutes of Health (NHLBI, K08 HL144911) and Radiological Society of North America (RSD-1820), and a Seed Fund from University of Pittsburgh/UPMC Departments of Radiology and Medicine to S.T; as well as a grant from National Institutes of Health (NHLBI R01 HL146465) to D.G.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 592 kb)

Supplementary material 2 (PPTX 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirdelen, S., Mannes, P.Z., Aral, A.M. et al. Divergence of acetate uptake in proinflammatory and inflammation-resolving macrophages: implications for imaging atherosclerosis. J. Nucl. Cardiol. 29, 1266–1276 (2022). https://doi.org/10.1007/s12350-020-02479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02479-5

Keywords

Navigation