Skip to main content

Advertisement

Log in

Changes in microarchitecture of atherosclerotic calcification assessed by 18F-NaF PET and CT after a progressive exercise regimen in hyperlipidemic mice

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Despite the association of physical activity with improved cardiovascular outcomes and the association of high coronary artery calcification (CAC) scores with poor prognosis, elite endurance athletes have increased CAC. Yet, they nevertheless have better cardiovascular survival. We hypothesized that exercise may transform vascular calcium deposits to a more stable morphology.

Methods

To test this, hyperlipidemic mice (Apoe−/−) with baseline aortic calcification were separated into 2 groups (n = 9/group) with control mice allowed to move ad-lib while the exercise group underwent a progressive treadmill regimen for 9 weeks. All mice underwent blood collections and in vivo 18F-NaF μPET/μCT imaging both at the start and end of the exercise regimen. At euthanasia, aortic root specimens were obtained for histomorphometry.

Results

Results showed that, while aortic calcification progressed similarly in both groups based on µCT, the fold change in 18F-NaF density was significantly less in the exercise group. Histomorphometric analysis of the aortic root calcium deposits showed that the exercised mice had a lower mineral surface area index than the control group. The exercise regimen also raised serum PTH levels twofold.

Conclusion

These findings suggest that weeks-long progressive exercise alters the microarchitecture of atherosclerotic calcium deposits by reducing mineral surface growth, potentially favoring plaque stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CAC:

Coronary artery calcification

PET:

Positron emission tomography

CT:

Computed tomography

Apoe:

Apolipoprotein E

NaF:

Sodium fluoride

ROI:

Region of interest

References

  1. Tanasescu M, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Exercise type and intensity in relation to coronary heart disease in men. JAMA 2002;288:1994-2000.

    Article  Google Scholar 

  2. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The physical activity guidelines for Americans. JAMA 2018;320:2020-8. https://doi.org/10.1001/jama.2018.14854.

    Article  PubMed  Google Scholar 

  3. Polonsky TS, McClelland RL, Jorgensen NW, Bild DE, Burke GL, Guerci AD, Greenland P. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 2010;303:1610-6. https://doi.org/10.1001/jama.2010.461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gepner AD, Young R, Delaney JA, Tattersall MC, Blaha MJ, Post WS, Gottesman RF, Kronmal R, Budoff MJ, Burke GL, Folsom AR, Liu K, Kaufman J, Stein JH. Comparison of coronary artery calcium presence, carotid plaque presence, and carotid intima-media thickness for cardiovascular disease prediction in the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging 2015. https://doi.org/10.1161/CIRCIMAGING.114.002262.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arnson Y, Rozanski A, Gransar H, Hayes SW, Friedman JD, Thomson LEJ, Berman DS. Impact of exercise on the relationship between CAC Scores and all-cause mortality. JACC Cardiovasc Imaging 2017;10:1461-8. https://doi.org/10.1016/j.jcmg.2016.12.030.

    Article  PubMed  Google Scholar 

  6. Radford NB, DeFina LF, Leonard D, Barlow CE, Willis BL, Gibbons LW, Gilchrist SC, Khera A, Levine BD. Cardiorespiratory fitness, coronary artery calcium, and cardiovascular disease events in a cohort of generally healthy middle-age men: Results from the Cooper Center Longitudinal Study. Circulation 2018;137:1888-95. https://doi.org/10.1161/CIRCULATIONAHA.117.032708.

    Article  CAS  PubMed  Google Scholar 

  7. Möhlenkamp S, Lehmann N, Breuckmann F, Bröcker-Preuss M, Nassenstein K, Halle M, Budde T, Mann K, Barkhausen J, Heusch G, Jöckel K-H, Erbel R, Marathon Study Investigators, Heinz Nixdorf Recall Study Investigators. Running: The risk of coronary events: Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J 2008;29:1903-10. https://doi.org/10.1093/eurheartj/ehn163.

    Article  PubMed  Google Scholar 

  8. Aengevaeren VL, Mosterd A, Braber TL, Prakken NHJ, Doevendans PA, Grobbee DE, Thompson PD, Eijsvogels TMH, Velthuis BK. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation 2017;136:138-48. https://doi.org/10.1161/CIRCULATIONAHA.117.027834.

    Article  CAS  PubMed  Google Scholar 

  9. Laddu DR, Rana JS, Murillo R, Sorel ME, Quesenberry CP, Allen NB, Gabriel KP, Carnethon MR, Liu K, Reis JP, Lloyd-Jones D, Carr JJ, Sidney S. 25-Year physical activity trajectories and development of subclinical coronary artery disease as measured by coronary artery calcium: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Mayo Clin Proc 2017;92:1660-70. https://doi.org/10.1016/j.mayocp.2017.07.016.

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz RS, Kraus SM, Schwartz JG, Wickstrom KK, Peichel G, Garberich RF, Lesser JR, Oesterle SN, Knickelbine T, Harris KM, Duval S, Roberts WO, O’Keefe JH. Increased coronary artery plaque volume among male marathon runners. Mo Med 2014;111:89-94.

    PubMed  PubMed Central  Google Scholar 

  11. Merghani A, Maestrini V, Rosmini S, Cox AT, Dhutia H, Bastiaenan R, David S, Yeo TJ, Narain R, Malhotra A, Papadakis M, Wilson MG, Tome M, AlFakih K, Moon JC, Sharma S. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation 2017;136:126-37. https://doi.org/10.1161/CIRCULATIONAHA.116.026964.

    Article  CAS  PubMed  Google Scholar 

  12. Garatachea N, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Emanuele E, Lucia A. Elite athletes live longer than the general population: A meta-analysis. Mayo Clin Proc 2014;89:1195-200. https://doi.org/10.1016/j.mayocp.2014.06.004.

    Article  PubMed  Google Scholar 

  13. Hoshino T, Chow LA, Hsu JJ, Perlowski AA, Abedin M, Tobis J, Tintut Y, Mal AK, Klug WS, Demer LL. Mechanical stress analysis of a rigid inclusion in distensible material: A model of atherosclerotic calcification and plaque vulnerability. Am J Physiol Heart Circ Physiol 2009;297:H802-10. https://doi.org/10.1152/ajpheart.00318.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abedin M, Tintut Y, Demer LL. Vascular calcification: Mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004;24:1161-70. https://doi.org/10.1161/01.ATV.0000133194.94939.42.

    Article  CAS  PubMed  Google Scholar 

  15. Criqui MH, Denenberg JO, Ix JH, McClelland RL, Wassel CL, Rifkin DE, Carr JJ, Budoff MJ, Allison MA. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA 2014;311:271-8. https://doi.org/10.1001/jama.2013.282535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marek I, Canu M, Cordasic N, Rauh M, Volkert G, Fahlbusch FB, Rascher W, Hilgers KF, Hartner A, Menendez-Castro C. Sex differences in the development of vascular and renal lesions in mice with a simultaneous deficiency of Apoe and the integrin chain Itga8. Biol Sex Differ 2017;8:19. https://doi.org/10.1186/s13293-017-0141-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu JJ, Lu J, Umar S, Lee JT, Kulkarni RP, Ding Y, Chang C-C, Hsiai TK, Hokugo A, Gkouveris I, Tetradis S, Nishimura I, Demer LL, Tintut Y. Effects of teriparatide on morphology of aortic calcification in aged hyperlipidemic mice. Am J Physiol Heart Circ Physiol 2018;314:H1203-13. https://doi.org/10.1152/ajpheart.00718.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JLE, Dweck MR, Joshi FR, Gallagher FA, Warburton EA, Bennett MR, Brindle KM, Newby DE, Rudd JH, Davenport AP. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun 2015;6:7495. https://doi.org/10.1038/ncomms8495.

    Article  PubMed  Google Scholar 

  19. Nerlekar N, Ha FJ, Cheshire C, Rashid H, Cameron JD, Wong DT, Seneviratne S, Brown AJ. Computed tomographic coronary angiography-derived plaque characteristics predict major adverse cardiovascular events: A systematic review and meta-analysis. Circ Cardiovasc Imaging 2018;11:e006973. https://doi.org/10.1161/CIRCIMAGING.117.006973.

    Article  PubMed  Google Scholar 

  20. Williams MC, Moss AJ, Dweck M, Adamson PD, Alam S, Hunter A, Shah ASV, Pawade T, Weir-McCall JR, Roditi G, van Beek EJR, Newby DE, Nicol ED. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART Study. J Am Coll Cardiol 2019;73:291-301. https://doi.org/10.1016/j.jacc.2018.10.066.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, Yeoh SE, Wallace W, Salter D, Fletcher AM, van Beek EJR, Flapan AD, Uren NG, Behan MWH, Cruden NLM, Mills NL, Fox KAA, Rudd JHF, Dweck MR, Newby DE. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet 2014;383:705-13. https://doi.org/10.1016/S0140-6736(13)61754-7.

    Article  PubMed  Google Scholar 

  22. Hsu JJ, Lim J, Tintut Y, Demer LL. Cell-matrix mechanics and pattern formation in inflammatory cardiovascular calcification. Heart 2016;102:1710-5. https://doi.org/10.1136/heartjnl-2016-309667.

    Article  CAS  PubMed  Google Scholar 

  23. Bouassida A, Latiri I, Bouassida S, Zalleg D, Zaouali M, Feki Y, Gharbi N, Zbidi A, Tabka Z. Parathyroid hormone and physical exercise: A brief review. J Sports Sci Med 2006;5:367-74.

    PubMed  PubMed Central  Google Scholar 

  24. Gardinier JD, Mohamed F, Kohn DH. PTH signaling during exercise contributes to bone adaptation. J Bone Miner Res 2015;30:1053-63. https://doi.org/10.1002/jbmr.2432.

    Article  CAS  PubMed  Google Scholar 

  25. Lee S, Prisby RD. Short-term intermittent PTH 1-34 administration and bone marrow blood vessel ossification in Mature and Middle-Aged C57BL/6 mice. Bone Rep 2019;10:100193. https://doi.org/10.1016/j.bonr.2018.100193.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Drs. Jason Lee, Arion Chatziioannou, and Sotirios Tetradis for support with imaging, as well as the use of the Mouse Physiology Laboratory of the Department of Physiology and the Pre-Clinical Facility of the Crump Institute for Molecular Imaging at the California NanoSystems Institute.

Disclosure

The authors declare that they have no competing interests or conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Tintut PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding

This work was supported by the National Institutes of Health (HL12109, HL137647, AG61586, P30AG028748), and an American Heart Association Post-Doctoral Research Fellowship (18POST34030272). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (PPTX 8770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, J.J., Fong, F., Patel, R. et al. Changes in microarchitecture of atherosclerotic calcification assessed by 18F-NaF PET and CT after a progressive exercise regimen in hyperlipidemic mice. J. Nucl. Cardiol. 28, 2207–2214 (2021). https://doi.org/10.1007/s12350-019-02004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-02004-3

Keywords

Navigation