Skip to main content

Advertisement

Log in

Left ventricular ejection fraction, myocardial blood flow and hemodynamic variables in adenosine and regadenoson vasodilator 82-Rubidium PET

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Aims

In most Rubidium-(Rb)-positron emission tomography (PET) studies, dipyridamole was used as vasodilator. The aim was to evaluate vasodilator PET left ventricular ejection fraction (LVEF), myocardial blood flow (MBF), hemodynamics, and the influence of adenosine and regadenoson on these variables.

Methods and results

Consecutive patients (N = 2299) with prior coronary artery disease (CAD) or no prior CAD undergoing adenosine/regadenoson 82Rb-PET were studied and compared according to CAD status and normal/abnormal PET (summed stress score 0-3 vs. ≥4). Rest and stress LVEF differed significantly depending on CAD status and scan results. In patients with no prior CAD, rest/stress LVEF were 68% and 72%, in patients with prior CAD 60% and 63%. LVEF during stress increased 5 ± 6% in normal compared to 1 ± 8% in abnormal PET (P<0.001). Global rest myocardial blood flow(rMBF), stress MBF(sMBF) and myocardial flow reserve (sMBF/rMBF) were significantly higher in no prior CAD patients compared to prior CAD patients(1.3 ± 0.5, 3.3 ± 0.9, 2.6 ± 0.8 and 1.2 ± 0.4, 2.6 ± 0.8, 2.4 ± 0.8 ml/g/min, respectively, P<0.001) and in normal versus abnormal scans, irrespective of CAD status(no prior CAD: 1.4 ± 0.5, 3.5 ± 0.8, 2.8 ± 0.8 and 1.2 ± 0.8, 2.5 ± 0.8, 2.2 ± 0.7; prior CAD: 1.3 ± 0.4, 3.1 ± 0.8, 2.7 ± 0.8 and 1.1 ± 0.4, 2.3 ± 0.7, 2.2 ± 0.7 ml/g/min, respectively, P<0.001). LVEF and hemodynamic values were similar for adenosine and regadenoson stress. Stress LVEF ≥70% excluded relevant ischemia (≥10%) with a negative predictive value (NPV) of 94% (CI 92-95%).

Conclusions

Rest/stress LVEF, LVEF reserve and MBF values are lower in abnormal compared to normal scans. Adenosine and regadenoson seem to have similar effect on stress LVEF, MBF and hemodynamics. A stress LVEF ≥70% has a high NPV to exclude relevant ischemia.

Chinese Abstract

背景

在大多数铷-正电子断层扫描 (Rb-PET)中,双嘧达莫是常见的血管扩张剂。本研究目的是评估血管扩张剂腺苷和瑞加德松PET扫描时对左心室射血分数 (LVEF)、心肌血流量 (MBF)、血流动力学这些变量的影响。

方法与结果

对接受腺苷/瑞加德松进行 82Rb-PET 的 2299 名连续就诊的疑似或已知冠状动脉疾病 (CAD)患者进行研究,并根据 CAD 状态和PET正常/异常(总负荷积分 0-3 与 ≥ 4)进行分组比较。 对CAD患者的状态和扫描结果分析可以发现静息和负荷状态下的LVEF显著不同。在疑似CAD患者中,静息/负荷状态下的LVEF分别为 68% 和73%,在既往CAD患者中静息/负荷状态下的LVEF分别为 60%和63%。PET正常组负荷LVEF增加5±6%,PET异常组LVEF增加 1±8% (p < 0.001)。疑似CAD组的整体静息心肌血流量(rest myocardial blood flow, rMBF)、负荷MBF(stress myocardial blood flow, sMBF)和心肌血流储备(sMBF/rMBF)显著高于既往CAD组(分别为 1.3±0.5、3.3±0.9、2.6±0.8和1.2±0.4、2.6±0.8、2.4±0.8 ml/g/min,p<0.001);与PET异常组比较,PET正常组的rMBF、sMBF和MFR明显增高,并且与CAD状态无关(无 CAD: 1.4±0.5、3.5±0.8、2.5±0.8和1.2±0.8, 2.5±0.8, 2.2±0.7 ml/g/min;确诊 CAD: 1.3±0.4,3.1±0.8,2.7±0.8和1.1±0.4,2.3±0.7,2.2 ±0.7ml/g/min, p<0.001)。腺苷和瑞加德松负荷的LVEF和血液动力学参数相似。负荷LVEF ≥70%排除相对缺血(面积≥10%)的阴性预测值(NPV)为94%(置信区间92-95%)。

结论

与正常的PET扫描相比,LVEF、LVEF储备和MBF值在PET异常情况下降低。腺苷和瑞加德松对负荷 LVEF、MBF和血流动力学有相似的作用。负荷 LVEF ≥70% 对排除相对缺血具有高 NPV 。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

MPI:

Myocardial perfusion imaging

PET:

Positron emission tomography

SPECT:

Single photon emission computed tomography

CT:

Computed tomography

Rb:

Rubidium

CAD:

Coronary artery disease

COPD:

Chronic obstructive pulmonary disease

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

CABG:

Coronary artery bypass graft

PCI:

Percutaneous coronary intervention

LVEF:

Left ventricular ejection fraction

BP:

Blood pressure

HR:

Heart rate

ECG:

Electrocardiogram

SRS:

Summed rest score

SSS:

Summed stress score

SDS:

Summed difference score

BMI:

Body mass index

LV:

Left ventricle

ESV:

End systolic volume

EDV:

End diastolic volume

SD:

Standard deviation

IQR:

Interquartile range

References

  1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407-77.

    Article  Google Scholar 

  2. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2012;60(24):e44-164.

    Article  Google Scholar 

  3. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82Rb PET/CT study. J Nucl Med. 2007;48(3):349-58.

    PubMed  Google Scholar 

  4. Brown TLY, Merrill J, Volokh L, Bengel FM. Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated 82rubidium myocardial perfusion PET. Eur J Nucl Med Mol Imaging. 2008;35(2):336-42.

    Article  Google Scholar 

  5. Hsiao E, Ali B, Blankstein R, Skali H, Ali T, Bruyere J Jr, et al. Detection of obstructive coronary artery disease using regadenoson stress and 82Rb PET/CT myocardial perfusion imaging. J Nucl Med. 2013;54(10):1748-54.

    Article  CAS  Google Scholar 

  6. Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging. 2009;2(7):846-54.

    Article  Google Scholar 

  7. Lertsburapa K, Ahlberg AW, Bateman TM, Katten D, Volker L, Cullom SJ, et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol. 2008;15(6):745-53.

    Article  Google Scholar 

  8. Shryock JC, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system: Biochemistry, physiology, and pharmacology. Am J Cardiol. 1997;79(12 A):2-10.

    Article  CAS  Google Scholar 

  9. Zoghbi GJ, Iskandrian AE. Selective adenosine agonists and myocardial perfusion imaging. J Nucl Cardiol. 2012;19(1):126-41.

    Article  Google Scholar 

  10. Al Jaroudi W, Iskandrian AE. Regadenoson: a new myocardial stress agent. J Am Coll Cardiol. 2009;54(13):1123-30.

    Article  CAS  Google Scholar 

  11. Cerqueira MD, Nguyen P, Staehr P, Underwood SR, Iskandrian AE. Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging. Integrated. Advance-MPI Trial Results. JACC Cardiovasc Imaging 2008;1(3):307-16

  12. Slomka PJ, Alexanderson E, Jácome R, Jiménez M, Romero E, Meave A, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med. 2012;53(2):171-81.

    Article  CAS  Google Scholar 

  13. Van Tosh A, Votaw JR, Reichek N, Palestro CJ, Nichols KJ. The relationship between ischemia-induced left ventricular dysfunction, coronary flow reserve, and coronary steal on regadenoson stress-gated 82Rb PET myocardial perfusion imaging. J Nucl Cardiol. 2013;20(6):1060-8.

    Article  Google Scholar 

  14. Hung G, Lee K, Chen C, Yang K, Lin W. Worsening of left ventricular ejection fraction induced by dipyridamole on Tl-201 gated myocardial perfusion imaging predicts significant coronary artery disease. J Nucl Cardiol. 2006;13(2):225-32.

    Article  CAS  Google Scholar 

  15. Manrique A, Hitzel A, Brasse D, Véra P. Effect of perfusion pattern and imaging sequence on gated perfusion SPECT evaluation of myocardial stunning. J Nucl Med. 2005;46(1):176-83.

    PubMed  Google Scholar 

  16. Tanaka H, Chikamori T, Hida S, Usui Y, Harafuji K, Igarashi Y, et al. Comparison of post-exercise and post-vasodilator stress myocardial stunning as assessed by electrocardiogram-gated single-photon emission computed tomography. Circ J. 2005;69(11):1338-45.

    Article  Google Scholar 

  17. Bravo PE, Chien D, Javadi M, Merrill J, Bengel FM. Reference ranges for LVEF and LV volumes from electrocardiographically gated 82Rb cardiac PET/CT using commercially available software. J Nucl Med. 2010;51(6):898-905.

    Article  Google Scholar 

  18. Menezes LJ, Groves AM, Prvulovich E, Dickson JC, Endozo R, Shastry MH, et al. Assessment of left ventricular function at rest using rubidium-82 myocardial perfusion PET: Comparison of four software algorithms with simultaneous 64-slice coronary CT angiography. Nucl Med Commun. 2009;30(12):918-25.

    Article  Google Scholar 

  19. Nakazato R, Berman DS, Dey D, Le Meunier L, Hayes SW, Fermin JS, et al. Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: Normal limits and correlation with invasive coronary angiography. J Nucl Cardiol. 2012;19(2):265-76.

    Article  Google Scholar 

  20. Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: Clinical validation with 15O-water. Eur J Nucl Med Mol Imaging. 2012;39(6):1037-47.

    Article  Google Scholar 

  21. El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: Comparison with 13N-ammonia PET. J Nucl Med. 2009;50(7):1062-71.

    Article  Google Scholar 

  22. Sunderland JJ, Pan X-B, Declerck J, Menda Y. Dependency of cardiac rubidium-82 imaging quantitative measures on age, gender, vascular territory, and software in a cardiovascular normal population. J Nucl Cardiol. 2015;22(1):72-84.

    Article  Google Scholar 

  23. Oliveira JB, Sen YM, Wechalekar K. Intersoftware variability impacts classification of cardiac PET exams. J Nucl Cardiol. 2019;26(6):2007-12.

    Article  Google Scholar 

  24. Goudarzi B, Fukushima K, Bravo P, Merrill J, Bengel FM. Comparison of the myocardial blood flow response to Regadenoson and dipyridamole: A quantitative analysis in patients referred for clinical 82Rb myocardial perfusion PET. Eur J Nucl Med Mol Imaging. 2011;38(10):1908-16.

    Article  CAS  Google Scholar 

  25. Cullom SJ, Case JA, Courter SA, McGhie AI, Bateman TM. Regadenoson pharmacologic rubidium-82 PET: A comparison of quantitative perfusion and function to dipyridamole. J Nucl Cardiol. 2013;20(1):76-83.

    Article  Google Scholar 

  26. Christopoulos G, Bois JP, Kemp BJ, Askew JW, Rodriguez-Porcel M, Anavekar N, et al. Comparison of maximal hyperemic myocardial blood flow response between regadenoson and adenosine: A quantitative positron emission tomography 13N-ammonia study. Nucl Med Biomed Imaging. 2019;4:1-6.

    Article  Google Scholar 

  27. Johnson NP, Gould KL. Regadenoson versus dipyridamole hyperemia for cardiac PET imaging. J Am Coll Cardiol Imaging. 2015;8(4):438-47.

    Article  Google Scholar 

  28. Ababneh AA, Sciacca RR, Kim B, Bergmann SR. Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: Influence of tracer, gender, and acquisition camera. J Nucl Cardiol. 2000;7(6):661-8.

    Article  CAS  Google Scholar 

  29. Rozanski A, Nichols K, Yao SS, Malholtra S, Cohen R, DePuey EG. Development and application of normal limits for left ventricular ejection fraction and volume measurements from 99mTc-sestamibi myocardial perfusion gated SPECT. J Nucl Med. 2000;41(9):1445-50.

    CAS  PubMed  Google Scholar 

  30. Katsikis A, Kyrozi E, Manira V, Theodorakos A, Malamitsi J, Tsapaki V, et al. Gender-related differences in side-effects and hemodynamic response to regadenoson in patients undergoing SPECT myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2019;46(12):2590-600.

    Article  CAS  Google Scholar 

  31. Gebhard C, Stähli BE, Gebhard CE, Fiechter M, Fuchs TA, Stehli J, et al. Gender- and age-related differences in rest and post-stress left ventricular cardiac function determined by gated SPECT. Int J Cardiovasc Imaging. 2014;30(6):1191-9.

    Article  Google Scholar 

  32. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55(2):248-55.

    Article  Google Scholar 

  33. Nesterov SV, Deshayes E, Sciagrà R, Settimo L, Declerck JM, Pan X-B, et al. Quantification of myocardial blood flow in absolute terms using (82)Rb PET imaging: the RUBY-10 Study. JACC Cardiovasc Imaging. 2014;7(11):1119-27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SMF: data collection, statistical analysis, data interpretation, draft of manuscript, approval of final manuscript version. UH: data collection, statistical analysis, data interpretation, draft of manuscript, approval of final manuscript version. OFC: assistance with statistical analysis, critical revision, approval of final manuscript version. FC: critical revision, approval of final manuscript version. PH: critical revision, approval of final manuscript version. MJZ: senior author, concept and study design, data interpretation, critical revision, approval of final manuscript version

Corresponding author

Correspondence to Ursina Honegger MSc.

Ethics declarations

Disclosures

Simon M. Frey, Ursina Honegger, Olivier F. Clerc, Federico Caobelli, Philip Haaf, and Michael J. Zellweger declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

JNC thanks Yanyun Liu, M.S., Min Zhao, M.D., and Weihua Zhou, Ph.D. for providing the Chinese abstract.

Funding

There was no funding for this study.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frey, S.M., Honegger, U., Clerc, O.F. et al. Left ventricular ejection fraction, myocardial blood flow and hemodynamic variables in adenosine and regadenoson vasodilator 82-Rubidium PET. J. Nucl. Cardiol. 29, 921–933 (2022). https://doi.org/10.1007/s12350-021-02729-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-021-02729-0

Keywords

Navigation