Skip to main content

Advertisement

Log in

18F-NaF PET uptake characteristics of coronary artery culprit lesions in a cohort of patients of acute coronary syndrome with ST-elevation myocardial infarction and chronic stable angina: A hybrid fluoride PET/CTCA study

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

18F-NaF PET/CT identifies high-risk plaques due to active calcification in coronary arteries with potential to characterize plaques in ST-elevation myocardial infarction (MI) and chronic stable angina (CSA) patients.

Methods

Twenty-four MI and 17 CSA patients were evaluated with 18F-NaF PET/CTCA for SUVmax and TBR values of culprit and non-culprit plaques in both groups (inter-group and intra-group comparison), and pre- and post-interventional MI plaques sub-analysis.

Results

Culprit plaques in MI patients had significantly higher SUVmax (1.6; IQR 0.6 vs 1.3; IQR 0.3, P = 0.03) and TBR (1.4; IQR 0.6 vs 1.1; IQR 0.4, P = 0.006) than culprit plaques of CSA. Pre-interventional culprit plaques of MI group (n = 11) revealed higher SUVmax (P = 0.007) and TBR (P = 0.008) values than culprit CSA plaques. Culprit plaques showed significantly higher SUVmax (P = 0.006) and TBR (P = 0.0003) than non-culprit plaques in MI group, but without significant difference between culprit and non-culprit plaques in CSA group. With median TBR cutoff value of 1.4 in MI culprit plaques, 6/7 plaques (85.7%) among the event prone non-culprit lesions had TBR values > 1.4 in CSA group.

Conclusion

The study shows higher SUVmax and TBR values in MI culprit plaques and comparable TBR values for event prone plaques of CSA group in identifying high-risk plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

MI:

Myocardial infarction

CSA:

Chronic stable angina

PET:

Positron emission tomography

CTCA:

Computed tomography coronary angiography

ACS:

Acute coronary syndrome

CTAC:

CT attenuation correction

ROI:

Region of interest

SUV:

Standardized uptake value

FDG:

Fluorodeoxyglucose

LAD:

Left anterior descending

RCA:

Right coronary artery

LCX:

Left circumflex artery

IVUS:

Intravascular ultrasound

OCT:

Optical coherence tomography

ECHO:

Echocardiography

References

  1. Falk E. Why do plaques rupture? Circulation. 1992;86(6 Suppl):30–42.

    Google Scholar 

  2. Stone GW, Maehara A, Mintz GS. The reality of vulnerable plaque detection. JACC Cardiovasc Imaging. 2011;4:902–4.

    Article  Google Scholar 

  3. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. CurrProblCardiol. 2010;35:72–115.

    Google Scholar 

  4. Fleg JL, Stone GW, Fayad ZA, Granada JF, Hatsukami TS, Kolodgie FD, et al. Detection of high-risk atherosclerotic plaque. JACC Cardiovasc Imaging. 2012;59:941–55.

    Article  Google Scholar 

  5. Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res. 2001;89:305–16.

    Article  CAS  Google Scholar 

  6. Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J Nucl Med. 2010;51(Suppl 1):51S–65S.

    Article  Google Scholar 

  7. Sandfort V, Lima JAC, Bluemke DA. Noninvasive imaging of atherosclerotic plaque progression. Circ Cardiovasc Imaging. 2015;8:e003316.

    Article  Google Scholar 

  8. Pozo E, Agudo-Quilez P, Rojas-González A, Alvarado T, Olivera MJ, Jiménez-Borreguero LJ, et al. Noninvasive diagnosis of vulnerable coronary plaque. World J Cardiol. 2016;8:520–33.

    Article  Google Scholar 

  9. Sun Z-H, Rashmizal H, Xu L. Molecular imaging of plaques in coronary arteries with PET and SPECT. J GeriatrCardiol. 2014;11:259–73.

    Google Scholar 

  10. Moise A, Clement B, Saltiel J. Clinical and angiographic correlates and prognostic significance of the coronary extent score. Am J Cardiol. 1988;61:1255–9.

    Article  CAS  Google Scholar 

  11. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.

    Article  CAS  Google Scholar 

  12. Vesey AT, Jenkins WS, Irkle A, Moss A, Sng G, Forsythe RO, et al. 18 F-fluoride and 18 F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke. Circ Cardiovasc Imaging. 2017;1:e004976.

    Article  Google Scholar 

  13. Joshi NV, Vesey A, Newby DE, Dweck MR. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr Cardiol Rep. 2014;16(9):521.

    Article  Google Scholar 

  14. Chaudhary R, Chauhan A, Singhal M, Bagga S. Risk factor profiling and study of atherosclerotic coronary plaque burden and morphology with coronary computed tomography angiography in coronary artery disease among young Indians. Int J Cardiol. 2017;240:452–7.

    Article  CAS  Google Scholar 

  15. Rudd JHF. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  CAS  Google Scholar 

  16. Derlin T, Toth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F- fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011;52:1020–7.

    Article  Google Scholar 

  17. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med. 2004;45:1816–21.

    PubMed  Google Scholar 

  18. Menezes LJ, Kotze CW, Agu O, Richards T, Brookes J, Goh VJ, et al. Investigating vulnerable atheroma using combined 18F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation. J Nucl Med. 2011;52:1698–703.

    Article  Google Scholar 

  19. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.

    Article  Google Scholar 

  20. Shioi A, Ikari Y. Plaque calcification during atherosclerosis progression and Regression. J Atheroscler Thromb. 2018;25:294–303.

    Article  CAS  Google Scholar 

  21. Ehara S. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110:3424–9.

    Article  Google Scholar 

  22. ElFaramawy A, Youssef M, Abdel Ghany M, Shokry K. Difference in plaque characteristics of coronary culprit lesions in a cohort of Egyptian patients presented with acute coronary syndrome and stable coronary artery disease: an optical coherence tomography study. Egypt Heart J. 2018;70:95–100.

    Article  Google Scholar 

  23. Tavakoli S, Sadeghi MM. 18F-sodium fluoride positron emission tomography and plaque calcification. Circ Cardiovasc Imaging. 2019;12:e008712.

    Article  Google Scholar 

  24. Creager MD, Hohl T, Hutcheson JD, Moss AJ, Schlotter F, Blaser MC, et al. 18F-Fluoride signal amplification identifies microcalcifications associated with atherosclerotic plaque instability in positron emission tomography/computed tomography images. Circ Cardiovasc Imaging. 2019;12:e007835.

    Article  Google Scholar 

  25. Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JLE, Dweck MR, et al. Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.

    Article  Google Scholar 

  26. Ferreira MJV, Oliveira-Santos M, Silva R, Gomes A, Ferreira N, Abrunhosa A, et al. Assessment of atherosclerotic plaque calcification using F18-NaF PET-CT. J Nucl Cardiol. 2018;25:1733–41.

    Article  Google Scholar 

  27. Maldonado N, Kelly-Arnold A, Vengrenyuk Y, Laudier D, Fallon JT, Virmani R, et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol. 2012;303(5):H619–28.

    Article  CAS  Google Scholar 

  28. Vengrenyuk Y, Cardoso L, Weinbaum S. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol Cell Biomech. 2008;5:37–47.

    PubMed  Google Scholar 

  29. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci. 2006;103:14678–83.

    Article  CAS  Google Scholar 

  30. Giannopoulos AA, Benz DC, Gräni C, Buechel RR. Imaging the event-prone coronary artery plaque. J Nucl Cardiol. 2019;26:141–53.

    Article  Google Scholar 

  31. Bellinge JW, Francis RJ, Majeed K, Watts GF, Schultz CJ. In search of the vulnerable patient or the vulnerable plaque: 18 F-sodium fluoride positron emission tomography for cardiovascular risk stratification. J Nucl Cardiol. 2018;25:1774–83.

    Article  Google Scholar 

  32. Yahagi K, Joner M, Virmani R. The mystery of spotty calcification; can we solve it by optical coherence tomography? Circ Cardiovasc Imaging. 2016;9:e004252.

    Article  Google Scholar 

  33. Shi X, Gao J, Lv Q, Cai H, Wang F, Ye R, et al. Calcification in atherosclerotic plaque vulnerability: friend or foe? Front. Physiol. 2020;11:56.

    Article  Google Scholar 

  34. Li Z-N, Yin W-H, Lu B, Yan H-B, Mu C-W, Gao Y, et al. Improvement of image quality and diagnostic performance by an innovative motion-correction algorithm for prospectively ECG triggered coronary CT angiography. PLOS ONE. 2015;10:e0142796.

    Article  Google Scholar 

  35. Blomberg BA, Thomassen A, Takx RA, Vilstrup MH, Hess S, Nielson AL, et al. Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism: results from the CAMONA study. J Nucl Cardiol. 2014;21:293–304.

    Article  Google Scholar 

Download references

Disclosure

Drs Abhiram G. Ashwathanarayana, SwayamjeetSatapathy, Ashwani Sood, Manphool Singhal, Bhagwant Rai Mittal, Rohit Manoj Kumar, Darshan Krishnappa, Nivedita Rana and Mr. Madan Parmar have nothing to disclose. No financial support was received for the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Sood DNB.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwathanarayana, A.G., Singhal, M., Satapathy, S. et al. 18F-NaF PET uptake characteristics of coronary artery culprit lesions in a cohort of patients of acute coronary syndrome with ST-elevation myocardial infarction and chronic stable angina: A hybrid fluoride PET/CTCA study. J. Nucl. Cardiol. 29, 558–568 (2022). https://doi.org/10.1007/s12350-020-02284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02284-0

Keywords

Navigation