Skip to main content

Advertisement

Log in

Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Several original articles and editorials have been published in the Journal of Nuclear Cardiology in 2017. It has become a tradition at the beginning of each year to summarize some of these key articles in 2 sister reviews. In this first part one, we will discuss some of the progress made in the field of heart failure (cardio-oncology, myocardial blood flow, viability, dyssynchrony, and risk stratification), inflammation, molecular and hybrid imaging using advancement in positron emission tomography, computed tomography, and magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Timmer et al. J, Nucl Cardiol 2017;24:657-67 (Figure 5, p 665)32

Figure 2

Salomaki et al. J Nucl Cardiol 2017;24:195-206 (Figure 1, p 201)71

Similar content being viewed by others

References

  1. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging. J Nucl Cardiol. 2015;22:507-12.

    Article  PubMed  Google Scholar 

  2. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2014: Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol. 2015;22:714-9.

    Article  PubMed  Google Scholar 

  3. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol. 2015;2016(23):122-30.

    Google Scholar 

  4. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2015-Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol. 2016;23:493-8.

    Article  PubMed  Google Scholar 

  5. AlJaroudi W, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2016. Part 1 of 2: Positron emission tomography, computed tomography and magnetic resonance. J Nucl Cardiol. 2016;2017(24):649-56.

    Google Scholar 

  6. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2016: Part 2 of 2-myocardial perfusion imaging. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-017-0875-2.

    PubMed Central  Google Scholar 

  7. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308:788-95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patchett ND, Pawar S, Miller EJ. Visual identification of coronary calcifications on attenuation correction CT improves diagnostic accuracy of SPECT/CT myocardial perfusion imaging. J Nucl Cardiol. 2017;24:711-20.

    Article  PubMed  Google Scholar 

  9. Miller TD, Rodriguez-Porcel M. Simple multimodality imaging: An easy, rapid, and inexpensive approach to improve non-invasive test accuracy. J Nucl Cardiol. 2017;24:721-3.

    Article  PubMed  Google Scholar 

  10. Engbers EM, Timmer JR, Ottervanger JP, Mouden M, Oostdijk AHJ, Knollema S, et al. Sequential SPECT/CT imaging for detection of coronary artery disease in a large cohort: Evaluation of the need for additional imaging and radiation exposure. J Nucl Cardiol. 2017;24:212-23.

    Article  PubMed  Google Scholar 

  11. Min JK. Primum non nocere. J Nucl Cardiol. 2017;24:224-5.

    Article  PubMed  Google Scholar 

  12. Assante R, Zampella E, Arumugam P, Acampa W, Imbriaco M, Tout D, et al. Quantitative relationship between coronary artery calcium and myocardial blood flow by hybrid rubidium-82 PET/CT imaging in patients with suspected coronary artery disease. J Nucl Cardiol. 2017;24:494-501.

    Article  PubMed  Google Scholar 

  13. Rozanski A, Uretsky S, Berman DS. Use of coronary artery calcium scanning as a triage for cardiac ischemia testing. J Nucl Cardiol. 2017;24:502-6.

    Article  PubMed  Google Scholar 

  14. Nasir K, Rubin J, Blaha MJ, Shaw LJ, Blankstein R, Rivera JJ, et al. Interplay of coronary artery calcification and traditional risk factors for the prediction of all-cause mortality in asymptomatic individuals. Circ Cardiovasc Imaging. 2012;5:467-73.

    Article  PubMed  Google Scholar 

  15. Engbers EM, Timmer JR, Ottervanger JP. Coronary artery calcium score as a gatekeeper in the non-invasive evaluation of suspected coronary artery disease in symptomatic patients. J Nucl Cardiol. 2017;24:826-31.

    Article  PubMed  Google Scholar 

  16. Ruckel SM, Gulati M. Coronary calcium scoring as the gate keeper for stress myocardial perfusion imaging: Antagonist. J Nucl Cardiol. 2017;24:832-4.

    Article  PubMed  Google Scholar 

  17. Rozanski A, Berman DS. Coronary artery calcium scanning in symptomatic patients: Ready for use as a gatekeeper for further testing? J Nucl Cardiol. 2017;24:835-8.

    Article  PubMed  Google Scholar 

  18. Uretsky S, Argulian E, Supariwala A, Agarwal SK, El-Hayek G, Chavez P, et al. Comparative effectiveness of coronary CT angiography vs stress cardiac imaging in patients following hospital admission for chest pain work-up: The prospective first evaluation in chest pain (PERFECT) trial. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-015-0354-6.

    Google Scholar 

  19. Bittencourt MS, Blankstein R. Coronary computed tomography angiography: How should we act on what we find? J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0494-3.

    PubMed  Google Scholar 

  20. Karthikeyan G, Guzic Salobir B, Jug B, Devasenapathy N, Alexanderson E, Vitola J, et al. Functional compared to anatomical imaging in the initial evaluation of patients with suspected coronary artery disease: An international, multi-center, randomized controlled trial (IAEA-SPECT/CTA study). J Nucl Cardiol. 2017;24:507-17.

    Article  PubMed  Google Scholar 

  21. Peix A. Functional versus anatomical approach in stable coronary artery disease patients: Perspective of low- and middle-income countries. J Nucl Cardiol. 2017;24:518-22.

    Article  PubMed  Google Scholar 

  22. Grani C, Benz DC, Schmied C, Vontobel J, Mikulicic F, Possner M, et al. Hybrid CCTA/SPECT myocardial perfusion imaging findings in patients with anomalous origin of coronary arteries from the opposite sinus and suspected concomitant coronary artery disease. J Nucl Cardiol. 2017;24:226-34.

    Article  PubMed  Google Scholar 

  23. Port S. Anomalous coronary arteries: What we know and what we do not know. J Nucl Cardiol. 2017;24:235-8.

    Article  PubMed  Google Scholar 

  24. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (analysis of coronary blood flow using CT angiography: Next steps). J Am Coll Cardiol. 2014;63:1145-55.

    Article  PubMed  Google Scholar 

  25. Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: The prospective longitudinal trial of FFR(CT): Outcome and resource impacts study. Eur Heart J. 2015;36:3359-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Rosendael AR, Kroft LJ, Broersen A, Dijkstra J, van den Hoogen IJ, van Zwet EW, et al. Relation between quantitative coronary CTA and myocardial ischemia by adenosine stress myocardial CT perfusion. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0393-7.

    PubMed Central  Google Scholar 

  27. Nakata T. A multifunctional CT technology: Reality or illusion for patient risk assessment? J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0439-x.

    PubMed  Google Scholar 

  28. Schindler TH. Cardiovascular PET/MR imaging: Quo vadis? J Nucl Cardiol. 2017;24:1007-18.

    Article  PubMed  Google Scholar 

  29. Schwaiger M, Kunze K, Rischpler C, Nekolla SG. PET/MR: Yet another Tesla? J Nucl Cardiol. 2017;24:1019-31.

    Article  PubMed  Google Scholar 

  30. Farzaneh-Far A, Kwong RY. Cardiovascular PET/MR: We need evidence, not hype. J Nucl Cardiol. 2017;24:1032-5.

    Article  PubMed  Google Scholar 

  31. Lau JMC, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, et al. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol. 2017;24:839-46.

    Article  PubMed  Google Scholar 

  32. Timmer SAJ, Teunissen PFA, Danad I, Robbers L, Raijmakers P, Nijveldt R, et al. In vivo assessment of myocardial viability after acute myocardial infarction: A head-to-head comparison of the perfusable tissue index by PET and delayed contrast-enhanced CMR. J Nucl Cardiol. 2017;24:657-67.

    Article  PubMed  Google Scholar 

  33. Gropler RJ. Relationship between residual viable myocardium and LV remodeling post-MI: Only part of the story. J Nucl Cardiol. 2017;24:668-71.

    Article  PubMed  Google Scholar 

  34. Bober RM, Thompson CD, Morin DP. The effect of coronary revascularization on regional myocardial blood flow as assessed by stress positron emission tomography. J Nucl Cardiol. 2017;24:961-74.

    Article  PubMed  Google Scholar 

  35. Srivastava AV, Ananthasubramaniam K. Guiding coronary revascularization using PET stress myocardial perfusion imaging: The proof is in the pudding. J Nucl Cardiol. 2017;24:975-9.

    Article  PubMed  Google Scholar 

  36. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19-27.

    Article  PubMed  Google Scholar 

  37. Gupta A, Taqueti VR, van de Hoef TP, Bajaj NS, Bravo PE, Murthy VL, et al. Integrated non-invasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation. 2017. https://doi.org/10.1161/CIRCULATIONAHA.117.029992.

    Google Scholar 

  38. Pampaloni MH, Shrestha UM, Sciammarella M, Seo Y, Gullberg GT, Botvinick EH. Noninvasive PET quantitative myocardial blood flow with regadenoson for assessing cardiac allograft vasculopathy in orthotopic heart transplantation patients. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-016-0761-3.

    PubMed  PubMed Central  Google Scholar 

  39. Packard RR, Maddahi J. Regadenoson-induced hyperemia for absolute myocardial blood flow quantitation by 13N-ammonia PET and detection of cardiac allograft vasculopathy. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-016-0763-1.

    Google Scholar 

  40. AlJaroudi W, Alraies MC, Hachamovitch R, Jaber WA, Brunken R, Cerqueira MD, et al. Association of left ventricular mechanical dyssynchrony with survival benefit from revascularization: A study of gated positron emission tomography in patients with ischemic LV dysfunction and narrow QRS. Eur J Nucl Med Mol Imaging. 2012;39:1581-91.

    Article  PubMed  Google Scholar 

  41. Van Tosh A, Votaw JR, Cooke CD, Reichek N, Palestro CJ, Nichols KJ. Relationships between left ventricular asynchrony and myocardial blood flow. J Nucl Cardiol. 2017;24:43-52.

    Article  PubMed  Google Scholar 

  42. Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC. 2009;2:846-54.

    PubMed  PubMed Central  Google Scholar 

  43. AlJaroudi W, Alraies MC, Menon V, Brunken RC, Cerqueira MD, Jaber WA. Predictors and incremental prognostic value of left ventricular mechanical dyssynchrony response during stress-gated positron emission tomography in patients with ischemic cardiomyopathy. J Nucl Cardiol. 2012;19:958-69.

    Article  PubMed  Google Scholar 

  44. Malhotra S, Canty JM Jr. Vasodilator stress and left ventricular asynchrony. J Nucl Cardiol. 2017;24:53-6.

    Article  PubMed  Google Scholar 

  45. Wang L, Zhou W, Liang Y, Yang Y, Garcia EV, Chen J, et al. Right ventricular dyssynchrony in pulmonary hypertension: Phase analysis using FDG-PET imaging. J Nucl Cardiol. 2017;24:69-78.

    Article  PubMed  Google Scholar 

  46. Van Tosh A, Nichols KJ. Ventricular asynchrony: A shift to the right? J Nucl Cardiol. 2017;24:79-82.

    Article  PubMed  Google Scholar 

  47. Drozd K, Ahmadi A, Deng Y, Jiang B, Petryk J, Thorn S, et al. Effects of an endothelin receptor antagonist, Macitentan, on right ventricular substrate utilization and function in a Sugen 5416/hypoxia rat model of severe pulmonary arterial hypertension. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0663-4.

    PubMed  Google Scholar 

  48. Scarabelli TM, Iskandrian AE. Editor highlight interview: Multi-modality imaging and clinical issues in cardio-oncology. J Nucl Cardiol. 2017;24:936-7.

    Article  PubMed  Google Scholar 

  49. Chen-Scarabelli C, McRee C, Leesar MA, Hage FG, Scarabelli TM. Comprehensive review on cardio-oncology: Role of multimodality imaging. J Nucl Cardiol. 2017;24:906-35.

    Article  PubMed  Google Scholar 

  50. Dos Santos MJ, da Rocha ET, Verberne HJ, da Silva ET, Aragon DC, Junior JS. Assessment of late anthracycline-induced cardiotoxicity by 123I-mIBG cardiac scintigraphy in patients treated during childhood and adolescence. J Nucl Cardiol. 2017;24:256-64.

    Article  PubMed  Google Scholar 

  51. Kim AS, Bergmann SR. Anthracycline-induced cardiomyopathy: The search continues. J Nucl Cardiol. 2017;24:265-7.

    Article  PubMed  Google Scholar 

  52. Jamali HK, Waqar F, Gerson MC. Cardiac autonomic innervation. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0725-7.

    Google Scholar 

  53. Travin MI. Multimodality molecular imaging in predicting ventricular arrhythmias and sudden cardiac death. J Nucl Cardiol. 2017;24:239-44.

    Article  PubMed  Google Scholar 

  54. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (adreview myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol. 2010;55:2212-21.

    Article  PubMed  Google Scholar 

  55. Hage FG, Aggarwal H, Patel K, Chen J, Jacobson AF, Heo J, et al. The relationship of left ventricular mechanical dyssynchrony and cardiac sympathetic denervation to potential sudden cardiac death events in systolic heart failure. J Nucl Cardiol. 2014;21:78-85.

    Article  PubMed  Google Scholar 

  56. Travin MI, Henzlova MJ, van Eck-Smit BLF, Jain D, Carrio I, Folks RD, et al. Assessment of 123I-mIBG and 99mTc-tetrofosmin single-photon emission computed tomographic images for the prediction of arrhythmic events in patients with ischemic heart failure: Intermediate severity innervation defects are associated with higher arrhythmic risk. J Nucl Cardiol. 2017;24:377-91.

    Article  PubMed  Google Scholar 

  57. Kumar V, Chaterjee A. Ventricular arrhythmias and autonomic nervous system: Evolving role of radionuclide imaging. J Nucl Cardiol. 2017;24:392-4.

    Article  PubMed  Google Scholar 

  58. Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol. 2017;24:574-90.

    Article  PubMed  Google Scholar 

  59. Travin MI. Neurocardiac imaging has a proven value in patient management. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-017-0948-2.

    Google Scholar 

  60. Liga R, Scholte A. Neuro-cardiac imaging has a proven value in patient management: Con. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-017-0947-3.

    PubMed Central  Google Scholar 

  61. Bax JJ. Clinical utility of cardiac innervation imaging in patients with heart failure. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-017-0988-7.

    Google Scholar 

  62. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: A systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241-8.

    Article  CAS  PubMed  Google Scholar 

  63. Lee PI, Cheng G, Alavi A. The role of serial FDG PET for assessing therapeutic response in patients with cardiac sarcoidosis. J Nucl Cardiol. 2017;24:19-28.

    Article  PubMed  Google Scholar 

  64. Ahmadian A, Pawar S, Govender P, Berman J, Ruberg FL, Miller EJ. The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. J Nucl Cardiol. 2017;24:413-24.

    Article  PubMed  Google Scholar 

  65. Manoushagian SJ, Lakhter V, Patil PV. Multimodality imaging in the diagnosis and management of cardiac sarcoidosis. J Nucl Cardiol. 2017;24:29-33.

    Article  PubMed  Google Scholar 

  66. Bateman TM. Cardiac sarcoidosis: An important niche for PET, but a journey just begun. J Nucl Cardiol. 2017;24:425-8.

    Article  PubMed  Google Scholar 

  67. Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol. 2017;24:86-99.

    Article  PubMed  Google Scholar 

  68. Bhambhvani P. Challenges of cardiac inflammation imaging with F-18 FDG positron emission tomography. J Nucl Cardiol. 2017;24:100-2.

    Article  PubMed  Google Scholar 

  69. Hyafil F, Rouzet F, Le Guludec D. Nuclear imaging for patients with a suspicion of infective endocarditis: Be part of the team! J Nucl Cardiol. 2017;24:207-11.

    Article  PubMed  Google Scholar 

  70. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. 2015 ESC Guidelines for the management of infective endocarditis: The task force for the management of infective endocarditis of the European Society of Cardiology (ESC). endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36:3075-128.

    Article  PubMed  Google Scholar 

  71. Salomaki SP, Saraste A, Kemppainen J, Bax JJ, Knuuti J, Nuutila P, et al. 18F-FDG positron emission tomography/computed tomography in infective endocarditis. J Nucl Cardiol. 2017;24:195-206.

    Article  PubMed  Google Scholar 

  72. Gnanenthiran SR, Anastasius M, Russo R, Kritharides L. Early diagnosis of peri-prosthetic aortic root infection with gallium SPECT/CT prior to abscess development results in avoidance of surgery. J Nucl Cardiol. 2017;24:743-5.

    Article  PubMed  Google Scholar 

  73. Jin H, Yang H, Liu H, Zhang Y, Zhang X, Rosenberg AJ, et al. A promising carbon-11-labeled sphingosine-1-phosphate receptor 1-specific PET tracer for imaging vascular injury. J Nucl Cardiol. 2017;24:558-70.

    Article  PubMed  Google Scholar 

  74. Thackeray JT, Bengel FM. Specificity vs versatility: A fine balance for novel targeted molecular imaging radiotracers. J Nucl Cardiol. 2017;24:571-3.

    Article  PubMed  Google Scholar 

  75. Mazurek T, Kobylecka M, Zielenkiewicz M, Kurek A, Kochman J, Filipiak KJ, et al. PET/CT evaluation of 18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: Independent predictor of atherosclerotic lesions’ formation? J Nucl Cardiol. 2017;24:1075-84.

    Article  PubMed  Google Scholar 

  76. Thorn SL, Sinusas AJ. Editorial in response to: PET/CT evaluation of 18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: Independent predictor of atherosclerotic lesion formation? : Is there prognostic value in evaluation of 18F-FDG uptake in the pericoronary adipose tissue? J Nucl Cardiol. 2017;24:1085-8.

    Article  PubMed  Google Scholar 

  77. Malm BJ, Sadeghi MM. Multi-modality molecular imaging of aortic aneurysms. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-017-0883-2.

    PubMed  Google Scholar 

  78. Hammad B, Evans NR, Rudd JHF, Tawakol A. Molecular imaging of atherosclerosis with integrated PET imaging. J Nucl Cardiol. 2017;24:938-43.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hellberg S, Silvola JMU, Kiugel M, Liljenback H, Savisto N, Li XG, et al. 18-kDa translocator protein ligand 18F-FEMPA: Biodistribution and uptake into atherosclerotic plaques in mice. J Nucl Cardiol. 2017;24:862-71.

    Article  PubMed  Google Scholar 

  80. Johnson LL. Targeting activated macrophages to identify the vulnerable atherosclerotic plaque. J Nucl Cardiol. 2017;24:872-5.

    Article  PubMed  Google Scholar 

  81. Suda M, Kiriyama T, Ishihara K, Onoguchi M, Kobayashi Y, Sakurai M, et al. The high matrix acquisition technique for imaging of atherosclerotic plaque inflammation in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography with time-of-flight: Phantom study. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0510-7.

    Google Scholar 

  82. Wells RG, Ruddy TD. The dream of imaging coronary artery inflammation with FDG PET/CT imaging. J Nucl Cardiol. 2016. https://doi.org/10.1007/s12350-016-0549-5.

    PubMed Central  Google Scholar 

  83. De Rosa A, Pellegrino T, Pappata S, Pellecchia MT, Peluso S, Sacca F, et al. Myocardial 123I-metaiodobenzylguanidine scintigraphy in patients with homozygous and heterozygous parkin mutations. J Nucl Cardiol. 2017;24:103-7.

    Article  PubMed  Google Scholar 

  84. Guillaume L, Denis A. Cardiac 123I-MIBG scintigraphy: A window into the brain in Parkinsonism? J Nucl Cardiol. 2017;24:108-10.

    Article  PubMed  Google Scholar 

  85. Takamura M, Murai H, Okabe Y, Okuyama Y, Hamaoka T, Mukai Y, et al. Significant correlation between renal 123I-metaiodobenzylguanidine scintigraphy and muscle sympathetic nerve activity in patients with primary hypertension. J Nucl Cardiol. 2017;24:363-71.

    Article  PubMed  Google Scholar 

  86. George C, Bhambhvani PG, Oparil S. 123I-mIBG scintigraphy: Clinical tool for assessing renal sympathetic activity? J Nucl Cardiol. 2017;24:372-6.

    Article  PubMed  Google Scholar 

  87. Moon SH, Hong SP, Cho YS, Noh TS, Choi JY, Kim BT, et al. Hepatic FDG uptake is associated with future cardiovascular events in asymptomatic individuals with non-alcoholic fatty liver disease. J Nucl Cardiol. 2017;24:892-9.

    Article  PubMed  Google Scholar 

  88. Kan H, van der Zant FM, Wondergem M, Knol RJ. Incidental extra-cardiac findings on 13N-ammonia myocardial perfusion PET/CT. J Nucl Cardiol. 2017. https://doi.org/10.1007/s12350-017-0824-0.

    Google Scholar 

Download references

Disclosures

Dr. Hage reports research grant support from Astellas Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi G. Hage MD, FASNC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlJaroudi, W.A., Hage, F.G. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J. Nucl. Cardiol. 25, 320–330 (2018). https://doi.org/10.1007/s12350-017-1120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-1120-8

Keywords

Navigation