Skip to main content
Log in

Analyzing electron acceleration mechanisms in magnetized plasma using Sinh–Gaussian pulse excitation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The phenomenon of laser wakefield acceleration is one of the prominent mechanisms to accelerate electrons to very high energies within a very small propagation distance. In this study, we have chosen Sinh–Gaussian laser pulse with static magnetic field perpendicular to direction of propagation of pulse. Analytical solution for chosen electric field is obtained from a generalized differential equation of laser wake potential. Hence, expressions for wakefield and electron energy gain are also obtained. Using feasible parameters, it is observed that when laser field amplitude increases from \(3.85 \times 10^{11} \) to \(4.81 \times 10^{11} \;{\text{V}}/{\text{m}}\), electron energy gain increases from 102.504 to 160.163 MeV in the absence of external magnetic field and 103.258 to 160.918 MeV in an external magnetic field of 40 T. So, laser field amplitude and strength of magnetic field both have direct impact on electron energy gain and enhance in energy gain can be seen. Our research will be useful for the researchers to obtain a more energy efficient electron acceleration mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. M. Singh, R.K. Singh, R.P. Sharma, THz generation by cosh-Gaussian lasers in a rippled density plasma. EPL (Europhys. Lett.) 104(3), 35002 (2013)

    Article  ADS  Google Scholar 

  2. H.K. Midha, V. Sharma, N. Kant, V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01413-5

    Article  Google Scholar 

  3. H.K. Midha, V. Sharma, N. Kant, V. Thakur, Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01563-6

    Article  Google Scholar 

  4. V. Thakur, N. Kant, S. Kumar, THz field enhancement under the influence of cross-focused laser beams in the m-CNTs. Trends Sci. 20(6), 5284 (2023)

    Article  Google Scholar 

  5. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43(1), 30 (2022)

    Article  ADS  CAS  Google Scholar 

  6. S. Kumar, S. Vij, N. Kant, V. Thakur, (2022) Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation. Waves Random Complex Med. (2022). https://doi.org/10.1080/17455030.2022.2155330

    Article  Google Scholar 

  7. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized Anharmonic carbon nanotube array. Plasmonics 17(1), 381–388 (2022)

    Article  CAS  Google Scholar 

  8. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 128112 (2022)

    Article  CAS  Google Scholar 

  9. S. Kumar, V. Thakur, N. Kant, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98(8), 085506 (2023)

    Article  ADS  Google Scholar 

  10. S. Kumar, N. Kant, V. Thakur, Magnetically tuned THz radiation through the HA-HA-CNTs under the effect of a transverse electric field. Indian J. Phys. (2023). https://doi.org/10.1007/s12648-023-02849-y

    Article  Google Scholar 

  11. M. Singh, D.N. Gupta, Relativistic third-harmonic generation of a laser in a self-sustained magnetized plasma channel. IEEE J. Quantum Electron. 50(6), 491–496 (2014)

    Article  ADS  CAS  Google Scholar 

  12. V. Sharma, V. Thakur, A. Singh, N. Kant, Third harmonic generation of a relativistic self-focusing laser in plasma under exponential density ramp. Z. Naturfr. Sect. J. Phys. Sci. 77(4), 323–328 (2022)

    ADS  CAS  Google Scholar 

  13. S. Sohrabi, S. Jelvani, K. Samavati, L. Farhang Matin, Effect of chirp parameter on the second harmonic efficiency in relativistic super-Gaussian laser-plasma interaction. Opt. Quantum Electron 55(11), 942 (2023)

    Article  Google Scholar 

  14. H.K. Dua, N. Kant, V. Thakur, Second harmonic generation induced by a surface plasma wave on a metallic surface in the presence of a wiggler magnetic field. Braz. J. Phys. 52(2), 44 (2022)

    Article  ADS  Google Scholar 

  15. N. Kant, A. Singh, V. Thakur, Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part. Beams 37(4), 442–447 (2019)

    Article  ADS  CAS  Google Scholar 

  16. V. Thakur, N. Kant, Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (Stuttg) 142, 455–462 (2017)

    Article  ADS  Google Scholar 

  17. V. Thakur, N. Kant, Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (Stuttg) 168, 159–164 (2018)

    Article  ADS  CAS  Google Scholar 

  18. N. Gupta, S. Kumar, S.B. Bhardwaj, Stimulated Raman scattering of self-focused elliptical q-Gaussian laser beam in plasma with axial density ramp: effect of ponderomotive force. J. Opt. 51(4), 819–833 (2022)

    Article  Google Scholar 

  19. S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt Quantum Electron 55(3), 281 (2023)

    Article  CAS  Google Scholar 

  20. V. Thakur, S. Kumar, N. Kant, Self-focusing of a Bessel-Gaussian laser beam in plasma under density transition. J. Nonlinear Opt. Phys. Mater. (2022). https://doi.org/10.1142/S0218863523500388

    Article  Google Scholar 

  21. V. Thakur, N. Kant, Stronger self-focusing of cosh-Gaussian laser beam under exponential density ramp in plasma with linear absorption. Optik (Stuttg) 183, 912–917 (2019)

    Article  ADS  Google Scholar 

  22. V. Thakur, M. Ahmad Wani, N. Kant, Relativistic self-focusing of Hermite-cosine-Gaussian laser beam in collisionless plasma with exponential density transition. Commun. Theor. Phys. 71(6), 736–740 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. V. Thakur, N. Kant, Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in Collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)

    Article  ADS  Google Scholar 

  24. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  CAS  Google Scholar 

  25. T. Tajima, X.Q. Yan, T. Ebisuzaki, Wakefield acceleration. Rev. Mod. Plasma. Phys. 4(1), 7 (2020)

    Article  ADS  Google Scholar 

  26. V. Sharma, V. Thakur, Enhanced laser wakefield acceleration utilizing Hermite-Gaussian laser pulses in homogeneous plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01565-4

    Article  Google Scholar 

  27. V. Sharma, N. Kant, V. Thakur, Electron acceleration in collisionless plasma: comparative analysis of laser wakefield acceleration using Gaussian and cosh-squared-Gaussian laser pulses. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01564-5

    Article  Google Scholar 

  28. S. Afhami, E. Eslami, Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation. AIP Adv. (2014). https://doi.org/10.1063/1.4894452

    Article  Google Scholar 

  29. H. Akou, M. Asri, Dependence of plasma wake wave amplitude on the shape of Gaussian chirped laser pulse propagating in a plasma channel. Phys. Lett. A 380(20), 1729–1734 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. H.R. Askari, A. Shahidani, Effect of magnetic field on production of wake field in laser–plasma interactions: Gaussian-like (GL) and rectangular–triangular (RT) pulses. Opt. Int. J. Light Electron Opt. 124(17), 3154–3161 (2013)

    Article  Google Scholar 

  31. M. Abedi-Varaki, N. Kant, Magnetic field-assisted wakefield generation and electron acceleration by Gaussian and super-Gaussian laser pulses in plasma. Mod. Phys. Lett. B 36(07), 2150604 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  32. V. Sharma, N. Kant, V. Thakur, Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration. Opt. Quantum Electron 56(1), 45 (2024)

    Article  Google Scholar 

  33. H.S. Ghotra, Laser wakefield and direct laser acceleration of electron by chirped laser pulses. Optik (Stuttg) (2022). https://doi.org/10.1016/j.ijleo.2022.169080

    Article  Google Scholar 

  34. V.B. Pathak, J. Vieira, R.A. Fonseca, L.O. Silva, Effect of the frequency chirp on laser wakefield acceleration. New J. Phys. 14(2), 023057 (2012)

    Article  ADS  Google Scholar 

  35. X. Zhang et al., Effect of pulse profile and chirp on a laser wakefield generation. Phys. Plasmas (2012). https://doi.org/10.1063/1.4714610

    Article  PubMed  PubMed Central  Google Scholar 

  36. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023)

    Article  ADS  Google Scholar 

  37. V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

    Article  Google Scholar 

  38. A. Jain, D.N. Gupta, Optimization of electron bunch quality using a chirped laser pulse in laser wakefield acceleration. Phys. Rev. Accel. Beams 24(11), 111302 (2021)

    Article  ADS  Google Scholar 

  39. S. Singh, D. Mishra, B. Kumar, P. Jha, Electron acceleration by wakefield generated by the propagation of chirped laser pulse in plasma. Phys. Scr. 98(7), 075504 (2023)

    Article  ADS  Google Scholar 

  40. Y. Heydarzadeh, H. Akou, Effect of laser polarization mode on wake wave excitation in magnetized plasma. IEEE Trans. Plasma Sci. 48(9), 3088–3097 (2020)

    Article  ADS  CAS  Google Scholar 

  41. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron 55(13), 1150 (2023)

    Article  Google Scholar 

  42. X. Zhang, T. Wang, V.N. Khudik, A.C. Bernstein, M.C. Downer, G. Shvets, Effects of laser polarization and wavelength on hybrid laser wakefield and direct acceleration. Plasma Phys. Control Fusion 60(10), 105002 (2018)

    Article  ADS  Google Scholar 

  43. V. Sharma, V. Thakur, Lasers wakefield acceleration in underdense plasma with ripple plasma density profile. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01548-5

    Article  Google Scholar 

  44. A. Pukhov, I. Kostyukov, Control of laser-wakefield acceleration by the plasma-density profile. Phys. Rev. E 77(2), 025401 (2008)

    Article  ADS  CAS  Google Scholar 

  45. D.N. Gupta, K. Gopal, I.H. Nam, V.V. Kulagin, H. Suk, Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32(3), 449–454 (2014)

    Article  ADS  CAS  Google Scholar 

  46. C. Aniculaesei et al., Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles. Sci. Rep. 9(1), 11249 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. W.P. Leemans et al., Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89(17), 174802 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. V. Sharma, S. Kumar, N. Kant, V. Thakur, Excitation of the Laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01326-3

    Article  Google Scholar 

  49. B.-S. Xie, A. Aimidula, J.-S. Niu, J. Liu, M.Y. Yu, Electron acceleration in the wakefield of asymmetric laser pulses. Laser Part. Beams 27(1), 27–32 (2009)

    Article  ADS  CAS  Google Scholar 

  50. K. Gopal, D.N. Gupta, Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses. Phys. Plasmas (2017). https://doi.org/10.1063/1.5001849

    Article  Google Scholar 

  51. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration. Z. Naturfr. A (2023). https://doi.org/10.1515/zna-2023-0238

    Article  Google Scholar 

  52. M. Abedi-Varaki, Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. B 32(20), 1850225 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  53. K.P. Singh, V.L. Gupta, L. Bhasin, V.K. Tripathi, Electron acceleration by a plasma wave in a sheared magnetic field. Phys. Plasmas 10(5), 1493–1499 (2003)

    Article  ADS  CAS  Google Scholar 

  54. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01250-6

    Article  Google Scholar 

  55. N.H. Mohammed, N.E. Cho, E.A. Adegani, T. Bulboaca, Geometric properties of normalized imaginary error function. Stud. Univ. Babes-Bolyai Mat. 67(2), 455–462 (2022)

    Article  MathSciNet  Google Scholar 

  56. H.R. Askari, A. Shahidani, Influence of properties of the Gaussian laser pulse and magnetic field on the electron acceleration in laser–plasma interactions. Opt. Laser Technol. 45, 613–619 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS involved in derivation, methodology, analytical modeling, graph plotting, and result discussion; VT involved in supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Thakur, V. Analyzing electron acceleration mechanisms in magnetized plasma using Sinh–Gaussian pulse excitation. J Opt (2024). https://doi.org/10.1007/s12596-024-01709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01709-0

Keywords

Navigation