Skip to main content
Log in

Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Laser wakefield acceleration is one of the prominent methods to obtain high energy charge particles. This method can be used to accelerate lighter charged particles like electrons to relativistic energy level. Energy enhancement of electrons depends on the properties of laser pulse as well as plasma. In this study, we have used a circular polarized laser pulse propagating (along z- axis) through under-dense plasma. An external oblique transverse static magnetic field is applied an arbitrary angle (at angle \(\uptheta\) with Y-axis in x–y plane). Effect of laser pulse strength (\(a\)), strength of external magnetic field (\({B}_{0}\)), and its arbitrary angle (\(\uptheta\)) on generated longitudinal wakefield, wake potential, change in relativistic factor and energy enhancement are calculated theoretically and curves are drawn. Optimized oblique angle for maximum wakefield and potential is calculated for selected parameters. This study is useful for obtaining an energy efficient acceleration technique for electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  • Abedi-Varaki, M.: Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. b. 32, 1850225 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Abedi-Varaki, M., Kant, N.: Magnetic field-assisted wakefield generation and electron acceleration and by Gaussian and super-Gaussian laser pulses in plasma. Mod. Phys. Lett. b. 36, 2150604 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Amiranoff, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Dorchies, F., Jacquet, F., Malka, V., Marquès, J.R., Matthieussent, G., Miné, P., Modena, A., Mora, P., Morillo, J., Najmudin, Z.: Observation of laser wakefield acceleration of electrons. Phys. Rev. Lett. 81(5), 995 (1998)

    Article  ADS  Google Scholar 

  • Fortin, P., Pich´e, M., Varin, C.: Direct-field electron acceleration with ultrafast radially polarized laser beams: scaling laws and optimization. J. Phys. b: at. Mol. Opt. Phys. 43, 025401 (2010)

    Article  ADS  Google Scholar 

  • Ghotra, H.S., Kant, N.: Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction. Laser Phys. Lett. 15, 066001 (2018)

    Article  ADS  Google Scholar 

  • Gupta, D.N., Ryu, C.-M.: Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum. Phys. Plasmas. 12, 053103 (2005)

    Article  ADS  Google Scholar 

  • Jha, P., Saroch, A., Mishra, R.K., Upadhyay, A.K.: Laser wakefield acceleration in magnetized plasma. Phys. Rev. Spec. Top. Accel. Beams 15, 081301 (2012)

    Article  ADS  Google Scholar 

  • Kad, P., Singh, A.: (2022) Coupled effect of spatio-temporal variation of Laguerre-Gaussian laser pulse on electron acceleration in magneto-plasma. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2121011

    Article  Google Scholar 

  • Kant, N., Singh, A., Thakur, V.: Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part. Beams 37(4), 442–447 (2019)

    Article  ADS  Google Scholar 

  • Kim, J., Wang, T., Khudik, V., Shvets, G.: Polarization and phase control of electron injection and acceleration in the plasma by a self-steepening laser pulse. New J. Phys. 25, 033009 (2023)

    Article  ADS  Google Scholar 

  • Kumar, A., Kant, N., Ghotra, H.S.: Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse. Opt. Quantum Electron. 53, 617 (2021a)

    Article  Google Scholar 

  • Kumar, S., Vij, S., Kant, N., Thakur, V.: Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17, 1–8 (2021b)

    Google Scholar 

  • Middha, K., Thakur, V., Kant, N., Rajput, J.: Comparison of linear and quadratic chirp in beat wave acceleration in vacuum. J. Phys: Conf. Ser. 2267, 012103 (2022)

    Google Scholar 

  • Mohammed, J., Ghotra, H.S., Kaur, R., Hafeez, H.Y., Kant, N.: Electron acceleration in the bubble regime. AIP Conf. Proc. 1860, 020013 (2017)

    Article  Google Scholar 

  • Payeur, S., Fourmaux, S., Schmidt, B.E., MacLean, J.P., Tchervenkov, C., Le´gare´, F., Piche´, M., Kieffer, J.C.: Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse. Appl. Phys. Lett. 101, 041105 (2012)

    Article  ADS  Google Scholar 

  • Salamin, Y.I.: Low-diffraction direct particle acceleration by a radially polarized laser beam. Phys. Lett. A 374, 4950–4953 (2010)

    Article  ADS  MATH  Google Scholar 

  • Sharma, V., Kumar, S.: To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys: Conf. Ser. 2267, 012097 (2022)

    Google Scholar 

  • Sharma, V., Thakur, V., Kant, N.: Third harmonic generation of a relativistic self-focusing laser in plasma in the presence of wiggler magnetic field. High Energy Density Phys. 32, 51–55 (2019)

    Article  ADS  Google Scholar 

  • Sharma, V., Kumar, S., Kant, N., Thakur, V.: Excitation of the laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01326-3

    Article  Google Scholar 

  • Shokri, B., Mirzaie, M.: Pulse shape influence in acceleration of plasma electrons by a circularly polarized laser pulse. In: International Conference on Lasers, Applications, and Technologies 2005: High-Power Lasers and Applications, edited by Bohn, W.L., Golubev, V.S., Ionin, A.A., Panchenko, V.Y.: Proceedings of SPIE. 6053, p. 605313, (2006)

  • Shukla, P.K.: Excitation of plasma waves by electromagnetic waves in magnetized plasmas. Phys. Fluids B 5, 3088–3091 (1993)

    Article  ADS  Google Scholar 

  • Singh, K.P.: Electron acceleration by a circularly polarized laser pulse in a plasma. Phys. Plasmas 11(8), 3992–3996 (2004)

    Article  ADS  Google Scholar 

  • Singh, R.: Electron energy enhancement by comparison of linearly and circularly polarized laser pulse in vacuum using different values of magnetic fields. J. At. Mol. Condens. Nano Phys. 5(2), 123–131 (2018)

  • Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 2146 (1988)

    Article  ADS  Google Scholar 

  • Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43(4), 267–270 (1979)

    Article  ADS  Google Scholar 

  • Thakur, V., Kant, N.: Stronger self-focusing of a chirped pulse laser with exponential density ramp profile in cold quantum magneto plasma. Optik – Int. J. Light Electron Opt. 172, 191–196 (2018)

    Article  Google Scholar 

  • Wen, M., Salamin, Y.I., Keitel, C.H.: Electron acceleration by a radially polarized laser pulse in a plasma micro-channel. Opt. Express 27(2), 557–566 (2019)

    Article  ADS  Google Scholar 

  • Xia, X., Wei, G., Tian, K., Chen, J., Liang, Q.: Electron acceleration by relativistic pondermotive force in the interaction of intense laser pulse with an axially inhomogeneous underdense plasma. Mod. Phys. Lett. B 36, 2230003 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, X., Wang, T., Khudik, V.N., Bernstein, A.C., Downer, M.C., Shvets, G.: Effects of laser polarization and wavelength on hybrid laser wakefield and direct acceleration. Plasma Phys. Controlled Fus. 60, 105002 (2018)

    Article  ADS  Google Scholar 

  • Zhu, X., Liu, W., Chen, M., Weng, S., He, F., Assmann, R., Sheng, Z., Zhang, J.: Generation of 100-MeV attosecond electron bunches with terawatt few-cycle laser pulses. Phys. Rev. Appl. 15, 044039 (2021)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS: derivation, methodology, analytical modeling, and graph plotting; SK: numerical analysis; NK: numerical analysis and result discussion; VT: supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval

Not applicable

Consent to participate

Not applicable.

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kumar, S., Kant, N. et al. Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt Quant Electron 55, 1150 (2023). https://doi.org/10.1007/s11082-023-05333-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05333-3

Keywords

Navigation