Skip to main content
Log in

THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present work, we have studied the effect of self-focusing and defocusing of Gaussian laser beam on the terahertz (THz) generation in the macroscopic dense array of anharmonic vertically aligned carbon nanotubes (VA-CNTs). The strong transverse nonlinear current is observed by the interaction of Gaussian laser beam with VA-CNTs as the transverse component of nonlinear ponderomotive force experienced by the plasma electrons of VA-CNTs is stronger which is further responsible for the THz generation at the modulation frequency. The anharmonic behavior of VA-CNTs also proved to be crucial in broadening the surface plasmon resonance peaks. The graphical anatomization shows that the self-focusing of the Gaussian laser beam is responsible for many fold enhancements in the THz generation. We have also studied the transient self-focusing of the Gaussian laser beam and its effect on the THz field amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  • Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 10(5), 609 (1968)

    Article  ADS  Google Scholar 

  • Castro-Camus, E., Koch, M., Mittleman, D.M.: Recent advances in terahertz imaging: 1999 to 2021. Appl. Phys. B 128(1), 12 (2022)

    Article  ADS  Google Scholar 

  • Dhillon, S.S., et al.: The 2017 terahertz science and technology roadmap”. J. Phys. D Appl. Phys. 50(4), 910–928 (2017)

    Article  Google Scholar 

  • Federici, J., Moeller, L.J.: Review of terahertz and subterahertz wireless communications. Appl. Phys. 107(11), 111101 (2010)

    Article  Google Scholar 

  • Ferguson, B., Zhang, X.-C.: Materials for terahertz science and technology. Nat. Mater. 1(1), 26–33 (2002)

    Article  ADS  Google Scholar 

  • Govind, M.M.S., Sharma, R.P.: Cross-focusing of two co-axial Gaussian electromagnetic beams in a magnetoplasma and plasma wave generation. Plasma Phys. 21(1), 13 (1979)

    Article  ADS  Google Scholar 

  • Hussain, S., Singh, M., Singh, R.K., Sharma, R.P.: THz generation by self-focusing by hollow Gaussian laser beam in magnetized plasma. EPL 107, 65002 (2014)

    Article  ADS  Google Scholar 

  • Jackson, J.B., Mourou, M., Whitaker, J.F., DulingIII, I.N., Williamson, S.L., Menu, M., Mourou, G.A.: Terahertz imaging for non-destructive evaluation of mural paintings. Opt. Commun. 281(4), 527–532 (2008)

    Article  ADS  Google Scholar 

  • Jackson, J.B., Bowen, J., Walker, G., Labaune, J., Mourou, G., Menu, M., Fukunaga, K.J.B.: A survey of terahertz applications in cultural heritage conservation science. IEEE Trans. Terahertz Sci. Technol. 1(1), 220–231 (2011)

    Article  ADS  Google Scholar 

  • Jain, S., Parashar, J., Kurchania, R.: Effect of magnetic field on terahertz generation via laser interaction with a carbon nanotube array. Int. Nano Lett. 3(1), 5326 (2013)

    Article  Google Scholar 

  • Kant, N., Vij, S., Chakravati, S.K., Kushwaha, J.P., Thakur, V.: Relativistic self-focusing of Hermite-cosh-Gaussian laser beam in magnetoplasma with exponential plasma density ramp. Commun. Theor. Phys. 71(12), 1469 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Kumar, S., Vij, S., Kant, N., Mehta, A., Thakur, V.: Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma. Euro. Phys. J. plus 136, 148 (2021)

    Article  Google Scholar 

  • Kumar, S., Vij, S., Kant, N., Thakur, V.: Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43, 30 (2022a)

    Article  Google Scholar 

  • Kumar, S., Vij, S., Kant, N., Thakur, V.: Resonant excitation of THz radiations by interaction of amplitude-modulated lasers with an anharmonic CNTs in the presence of static D.C. electric and magnetic fields. Chin. J. Phys. 78, 453–462 (2022b)

    Article  MathSciNet  Google Scholar 

  • Kumar, S., Vij, S., Kant, N., Thakur, V.: Interaction of spatial-Gaussian lasers with the magnetized CNTs in the presence of DC electric field and enhanced THz emission. Phys. Scr. 98, 015015 (2022c)

    Article  ADS  Google Scholar 

  • Kumar, S., Vij, S., Kant, N., Thakur, V.: Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17, 381–388 (2022d)

    Article  Google Scholar 

  • Kumar, S., Vij, S., Kant, N., Thakur, V.: Resonant Terahertz generation by cross-focusing of Gaussian beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 128112 (2022e)

    Article  Google Scholar 

  • Kumar, S., Vij, S., Kant, N., Thakur, V.: Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation. Waves Random Complex Media (2022f). https://doi.org/10.1080/17455030.2022.2155330

    Article  Google Scholar 

  • Lu, W., Wang, D., Chen, L.: Near-static dielectric polarization of individual carbon nanotubes. Nano Lett. 7, 2729 (2007)

    Article  ADS  Google Scholar 

  • Muñoz, E., Maser, W.K., Benito, A.M., Martínez, M.T., de la Fuente, G.F., Righi, A., Sauvajol, J.L., Anglaret, E., Maniette, Y.: Single-walled carbon nanotubes produced by cw CO2-laser ablation: study of parameters important for their formation. Appl. Phys. A 70, 145–151 (2000)

    Article  ADS  Google Scholar 

  • Niu, H.Y., He, X.T., Qiao, B., Zhou, C.T.: Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 51–59 (2008)

    Article  ADS  Google Scholar 

  • Reich, S., Thomson, C., Maultzsch, J.:Carbon nanotubes: basic concepts and physical properties. Wiley VCH 54–78 (2004).

  • Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105 (1998)

    Article  ADS  Google Scholar 

  • Sharma, A.K.: Transverse self-focusing and filamentation of a laser beam in a magnetoplasma. J. Appl. Phys. 49(4), 2396 (1978)

    Article  ADS  Google Scholar 

  • Sharma, R.P., Singh, R.K.: Terahertz generation by two cross focused laser beams in collisional plasmas. Phys. Plasmas 21(7), 073101 (2014)

    Article  ADS  Google Scholar 

  • Sharma, S., Vijay, A.: Terahertz generation via laser coupling to anharmonic carbon nanotube array. Phys. Plasmas. 25(2), 023114 (2018)

    Article  ADS  Google Scholar 

  • Sharma, S., Vijay, A.: Nonlinear mixing of lasers and terahertz generation on CNT embedded metal surface. Optik 199(1), 163381 (2019)

    Article  ADS  Google Scholar 

  • Siegel, P.H.: Terahertz technology in biology and medicine. IEEE Trans. Micro Theory Tech. 52(10), 2438–2447 (2004)

    Article  ADS  Google Scholar 

  • Sodha, M.S., Khanna, R.K., Tripathi, V.K.: The self-focusing of electromagnetic beams in a strongly ionized magnetoplasma. J. Phys. D Appl. Phys. 7(16), 2188 (1974)

    Article  ADS  Google Scholar 

  • Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: V self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 171–265 (1976)

    ADS  Google Scholar 

  • Sodha, M.S., Salimullah, M., Sharma, R.P.: Generation of an ion-acoustic pulse by two electromagnetic pulses at difference frequencies in collisionless plasma. Phys. Rev. A 21, 1708–1716 (1980)

    Article  ADS  Google Scholar 

  • Sprangle, P., Esarey, E.: Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 2021–2024 (1991)

    Article  ADS  Google Scholar 

  • Thakur, V., Kant, N.: Influence of linear absorption and density ramp on self-focusing of the Hermite-Gaussian chirped pulse laser in plasma. Opt. Quantum Electron. 53(1), 1–10 (2021)

    MathSciNet  Google Scholar 

  • Titova, L.V., Pint, C.L., Zhang, Q., Hauge, R.H., Kono, J., Hegmann, F.A.: Generation of terahertz Radiation by optical excitation of aligned carbon nanotubes. Nano Lett. 15(5), 3267–3272 (2015)

    Article  ADS  Google Scholar 

  • Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon. 1(1), 97–105 (2007)

    Article  ADS  Google Scholar 

  • Vij, S., Kant, N., Thakur, V.S.: Resonant enhancement of THz radiation through vertically aligned carbon nanotubes array by applying wiggler magnetic field. Plasmonics 14(1), 1051–1056 (2019)

    Article  Google Scholar 

  • Watanabe, S., Minami, N., Shimano, R.: Intense terahertz pulse induced exciton generation in carbon nanotubes. Opt. Express 19(2), 1528–1538 (2011)

    Article  ADS  Google Scholar 

  • Wu, H.C., Meyer-ter-Vehn, J., Ruhl, H., Sheng, Z.M.: Terahertz radiation from a laser plasma filament. Phys. Rev. E 83, 036407 (2011)

    Article  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SK: derivation, methodology, analytical modeling and graph plotting; NK: numerical analysis and result discussion; VT: supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Ethics approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kant, N. & Thakur, V. THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt Quant Electron 55, 281 (2023). https://doi.org/10.1007/s11082-023-04562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04562-w

Keywords

Navigation