Skip to main content
Log in

Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The production of terahertz (THz) radiation via the interaction between lasers and plasmas is an intriguing and swiftly progressing domain of study within the realms of optics and plasma physics. The aforementioned procedure entails the utilisation of high-intensity laser pulses to engage with a plasma, hence leading to the generation of coherent THz radiation. THz radiation, which falls within the frequency range between microwave and infrared, finds utility in various domains such as imaging, spectroscopy, and materials characterisation.This study examines the interaction of two p-polarised, positively chirped laser beams, with a hot collisional plasma characterised by a slanting up density profile. This study investigates the impact of normalised THz frequency, normalised collisional frequency, chirp parameter, and incidence angle of a laser beam on the normalised THz amplitude. The amplitude of the THz signal diminishes fast in off-resonant conditions and tends towards zero as the normalised THz frequency exceeds \(1.2\). The normalised amplitude of the THz wave falls as the chirp parameter increases from \(0.0011\, {\text{to}}\, 0.0099\), considering both the normalised THz frequency and the normalised slanting up density modulation parameter. The amplitude of the THz signal, after being normalised, is also influenced by the incident angle and the collisional frequency. In the off-resonant state, the normalised amplitude of the THz wave tends to approach zero when the collisional frequency exceeds \(0.8\). The objective of this study is to enhance the current knowledge regarding the estimation of the best incident oblique angle, chirp parameter, and collisional frequency to attain an energy-efficient THz source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. J. Hebling, K.-L. Yeh, M.C. Hoffmann, K.A. Nelson, High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy. IEEE J. Sel. Top. Quantum Electron. 14(2), 345–353 (2008)

    Article  ADS  Google Scholar 

  2. S. Watanabe, Terahertz polarization imaging and its applications. Photonics 5(4), 58 (2018)

    Article  Google Scholar 

  3. K. Rikkinen, P. Kyosti, M.E. Leinonen, M. Berg, A. Parssinen, THz radio communication: link budget analysis toward 6G. IEEE Commun. Mag. 58(11), 22–27 (2020)

    Article  Google Scholar 

  4. A.A. Gowen, C. O’Sullivan, C.P. O’Donnell, Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci. Technol. 25(1), 40–46 (2012)

    Article  Google Scholar 

  5. N. Gupta, S. Kumar, S.B. Bhardwaj, Stimulated Raman scattering of self focused elliptical q-Gaussian laser beam in plasma with axial temperture ramp: effect of ponderomotive force. J. Electromagn. Waves Appl. 36(6), 767–786 (2022)

    Article  ADS  Google Scholar 

  6. S. Kumar, S. Vij, N. Kant, A. Mehta, V. Thakur, Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma. Eur. Phys. J. Plus 136(2), 148 (2021)

    Article  Google Scholar 

  7. N. Gupta, Effect of orbital angular momentum of light on self-action effects of Laguerre Gaussian laser beams in collisionless plasmas. J. Opt. 50(3), 466–477 (2021)

    Article  Google Scholar 

  8. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17(1), 381–388 (2022)

    Article  Google Scholar 

  9. S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt Quantum Electron 55(3), 281 (2023)

    Article  Google Scholar 

  10. N. Gupta, S.B. Bhardwaj, Nonlinear interaction of Bessel-Gauss laser beams with plasmas with axial temperature ramp. J. Opt. 51(4), 950–959 (2022)

    Article  Google Scholar 

  11. V. Thakur, S. Vij, N. Kant, S. Kumar, THz generation by propagating lasers through magnetized SWCNTs. Indian J. Phys. 97(7), 2191–2196 (2023)

    Article  ADS  Google Scholar 

  12. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43(1), 30 (2022)

    Article  ADS  Google Scholar 

  13. S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation., Waves Rand. Complex Media 1–13 (2022). https://doi.org/10.1080/17455030.2022.2155330

  14. N. Gupta, R. Johari, S. Kumar, S.B. Bhardwaj, S. Choudhry, Optical guiding of q-Gaussian laser beams in radial density plasma channel created by two prepulses: ignitor and heater. J. Opt. 51(3), 749–760 (2022)

    Article  Google Scholar 

  15. N. Gupta, S. Kumar, S.B. Bhardwaj, S. Kumar, S. Choudhry, Nonlinear interaction of quadruple Gaussian laser beams with narrow band gap semiconductors. J. Opt. 51, 269–282 (2021)

  16. A.A. Frolov, Terahertz emission at a p-polarized laser radiation action on plasma. Phys. Plasmas 28(1), 013104 (2021)

    Article  ADS  Google Scholar 

  17. X. Xie, J. Dai, X.-C. Zhang, Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96(7), 075005 (2006)

    Article  ADS  Google Scholar 

  18. M. Hashemzadeh, Terahertz radiation generation through nonlinear interaction of frequency chirped laser pulses with hot inhomogeneous plasmas. Waves Rand. Complex Media 32(5), 2279–2296 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y.T. Li, et al., Strong terahertz radiation from relativistic laser interaction with solid density plasmas. Appl Phys Lett 100, 25 (2012)

  20. H. Huang, T. Nagashima, W. Hsu, S. Juodkazis, K. Hatanaka, Dual THz wave and X-ray generation from a water film under femtosecond laser excitation. Nanomaterials 8(7), 523 (2018)

    Article  Google Scholar 

  21. G.-Q. Liao, Y.-T. Li, Review of intense terahertz radiation from relativistic laser-produced plasmas. IEEE Trans. Plasma Sci. 47(6), 3002–3008 (2019)

    Article  ADS  Google Scholar 

  22. Z.-M. Sheng, H.-C. Wu, K. Li, J. Zhang, Terahertz radiation from the vacuum-plasma interface driven by ultrashort intense laser pulses. Phys. Rev. E 69(2), 025401 (2004)

    Article  ADS  Google Scholar 

  23. M. Amouamouha, F. Bakhtiari, B. Ghafary, Self-focused amplitude modulated super Gaussian laser beam in plasma and THz radiation with high efficiency. Results Phys. 17, 103086 (2020)

    Article  Google Scholar 

  24. H. Hamster, A. Sullivan, S. Gordon, W. White, R. W. Falcone, Subpicosecond, electromagnetic pulses from intense laser-plasma interaction, 71 (1993)

  25. V. Thakur, N. Kant, Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (Stuttg) 168, 159–164 (2018)

    Article  ADS  Google Scholar 

  26. M. Hashemzadeh, Terahertz radiation generation by Hermite-cosh Gaussian and hollow Gaussian laser beams in magnetized inhomogeneous plasmas. Braz. J. Phys. 53(2), 46 (2023)

    Article  ADS  Google Scholar 

  27. F. Jahangiri, M. Hashida, T. Nagashima, S. Tokita, M. Hangyo, S. Sakabe, Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses. Appl. Phys. Lett. 99, 26 (2011)

    Google Scholar 

  28. V. Sharma, V. Thakur, N. Kant, Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt Quantum Electron 52(10), 444 (2020)

    Article  Google Scholar 

  29. F. Bakhtiari, M. Esmaeilzadeh, B. Ghafary, Terahertz radiation with high power and high efficiency in a magnetized plasma. Phys. Plasmas 24, 7 (2017)

    Article  Google Scholar 

  30. M.C. Gurjar, K. Gopal, D.N. Gupta, V.V. Kulagin, H. Suk, High-field coherent terahertz radiation generation from chirped laser pulse interaction with plasmas. IEEE Trans. Plasma Sci. 48(10), 3727–3734 (2020)

    Article  ADS  Google Scholar 

  31. V. Thakur, N. Kant, Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)

    Article  ADS  Google Scholar 

  32. S. Mou et al., Impact of laser chirp on the polarization of terahertz from two-color plasma. Photonics Res 11(6), 978 (2023)

    Article  Google Scholar 

  33. A. Nguyen, P.G.A. de Martínez, I. Thiele, S. Skupin, L. Bergé, THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses. New J. Phys. 20(3), 033026 (2018)

    Article  ADS  Google Scholar 

  34. L. Zhang, L.Z. Ji, P.Y. Sun, Z.H. Jiao, S.F. Zhao, G.L. Wang, Enhanced terahertz generation by controlling electron trajectory with chirp laser field. Indian J. Phys., 1–8 (2023). https://doi.org/10.1007/s12648-023-02834-5

  35. X. Xu et al., Laser-chirp controlled terahertz wave generation from air plasma. Chin. Phys. Lett. 40(4), 045201 (2023)

    Article  ADS  Google Scholar 

  36. Z. Ghayemmoniri, R.N. Siahmazgi, S. Jafari, Terahertz radiation generation driven by beating of chirped laser pulses in single-walled carbon nanotubes by applying tapered magnetic field. Eur. Phys. J. D 77(3), 48 (2023)

    Article  ADS  Google Scholar 

  37. H. Hora, Self-focusing of laser beams in a plasma by ponderomotive forces. Z. Phys. Hadrons Nucl. 226(2), 156–159 (1969)

    Article  Google Scholar 

  38. P. Sprangle, G. Joyce, E. Esarey, A. Ting, Laser wakefield acceleration and relativstic optical guiding, in AIP Conference Proceedings (AIP, 1988), pp. 231–239

  39. V. Thakur, N. Kant, Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (Stuttg) 142, 455–462 (2017)

    Article  ADS  Google Scholar 

  40. R.A. Ganeev, High-order harmonic generation in a laser plasma: a review of recent achievements. J. Phys. B At. Mol. Opt. Phys. 40(22), R213–R253 (2007)

    Article  ADS  Google Scholar 

  41. V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. (Beijing) 11(4), 115202 (2016)

    Article  ADS  Google Scholar 

  42. U. Teubner, P. Gibbon, High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81(2), 445–479 (2009)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Hitesh Kumar Midha contributed to derivation, methodology, analytical modelling, and graph plotting; Vivek Sharma contributed to numerical analysis; Niti Kant contributed to numerical analysis and result discussion; and Vishal Thakur contributed to supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midha, H.K., Sharma, V., Kant, N. et al. Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation. J Opt (2023). https://doi.org/10.1007/s12596-023-01563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01563-6

Keywords

Navigation