Skip to main content
Log in

Lasers wakefield acceleration in underdense plasma with ripple plasma density profile

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The determination of the propagation parameters of a laser pulse across plasma and its various effects heavily relies on the plasma density. Consequently, a ripple density plasma was employed in our study to examine the axial laser wakefield generated by the laser pulse. We have derived analytical formulas to describe this phenomenon. The longitudinal wakefield generated in both homogeneous plasma and plasma with ripple density has been computed. The investigation is under way to examine the effects of fluctuating ripple plasma density. The findings indicate that the wakefield generated expands in size with the amplification of the ripple’s amplitude. The investigation could serve as a valuable initial reference for the optimization of the laser wakefield acceleration experiment with the aim of enhancing electron acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. J. Hecht, Short history of laser development. Opt. Eng. 49(9), 091002 (2010)

    Article  ADS  Google Scholar 

  2. K. Wiesemann, A Short introduction to plasma physics. Arxiv (2014). https://doi.org/10.48550/arXiv.1404.0509

  3. N. Kant, V. Thakur, Enhanced self-focusing of Laguerre–Gaussian laser beam in relativistic plasma under exponential plasma density transition. Chin. J. Phys. 70, 182–187 (2021)

    Article  MathSciNet  Google Scholar 

  4. V. Thakur, N. Kant, Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite–Cosine–Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)

    Article  ADS  Google Scholar 

  5. V. Sharma, V. Thakur, N. Kant, Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt. Quantum Electron 52(10), 444 (2020)

    Article  Google Scholar 

  6. V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. (Beijing) 11(4), 115202 (2016)

    Article  ADS  Google Scholar 

  7. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023)

    Article  ADS  Google Scholar 

  8. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron 55(13), 1150 (2023)

    Article  Google Scholar 

  9. V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

    Article  Google Scholar 

  10. X. Feng, S. Lee, The beat-wave accelerator in a relativistic electron oscillation plasma. J. Phys. B At. Mol. Opt. Phys. 29(9), L373–L380 (1996)

    Article  ADS  Google Scholar 

  11. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01250-6

    Article  Google Scholar 

  12. R.K. Bera, D. Mandal, A. Das, S. Sengupta, Effect of transverse beam size on the wakefields and driver beam dynamics in plasma wakefield acceleration schemes. AIP Adv. 10(2), 025203 (2020)

    Article  ADS  Google Scholar 

  13. B. Hidding, B. Foster, M.J. Hogan, P. Muggli, J.B. Rosenzweig, Directions in plasma wakefield acceleration. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377(2151), 20190215 (2019)

    Article  ADS  Google Scholar 

  14. A. Pukhov, S. Gordienko, S. Kiselev, I. Kostyukov, The bubble regime of laser–plasma acceleration: monoenergetic electrons and the scalability. Plasma Phys. Control Fus. 46(12B), B179–B186 (2004)

    Article  Google Scholar 

  15. T. Tajima, X.Q. Yan, T. Ebisuzaki, Wakefield acceleration. Rev. Mod. Plasma Phys. 4(1), 7 (2020)

    Article  ADS  Google Scholar 

  16. V. Sharma, S. Kumar, N. Kant, V. Thakur, Excitation of the laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023). https://doi.org/10.1007/s13538-023-01370-1

    Article  Google Scholar 

  17. K. Gopal, D.N. Gupta, H. Suk, Pulse-length effect on laser wakefield acceleration of electrons by skewed laser pulses. IEEE Trans. Plasma Sci. 49(3), 1152–1158 (2021)

    Article  ADS  Google Scholar 

  18. H.K. Malik, S. Kumar, Y. Nishida, Electron acceleration by laser produced wake field: pulse shape effect. Opt. Commun. 280(2), 417–423 (2007)

    Article  ADS  Google Scholar 

  19. V.B. Pathak, J. Vieira, R.A. Fonseca, L.O. Silva, Effect of the frequency chirp on laser wakefield acceleration. New J. Phys. 14(2), 023057 (2012)

    Article  ADS  Google Scholar 

  20. N. Kant, A. Singh, V. Thakur, Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part. Beams 37(4), 442–447 (2019)

    Article  ADS  Google Scholar 

  21. V. Thakur, N. Kant, Stronger self-focusing of cosh-Gaussian laser beam under exponential density ramp in plasma with linear absorption. Optik (Stuttg) 183, 912–917 (2019)

    Article  ADS  Google Scholar 

  22. V. Thakur, N. Kant, Resonant second harmonic generation of chirped pulse laser in plasma. Optik (Stuttg) 129, 239–247 (2017)

    Article  ADS  Google Scholar 

  23. H.K. Midha, V. Sharma, N. Kant, V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01413-5

    Article  Google Scholar 

  24. C. Aniculaesei et al., Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles. Sci. Rep. 9(1), 11249 (2019)

    Article  ADS  Google Scholar 

  25. C.G.R. Geddes et al., Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100(21), 215004 (2008)

    Article  ADS  Google Scholar 

  26. A. Pukhov, I. Kostyukov, Control of laser-wakefield acceleration by the plasma-density profile. Phys. Rev. E 77(2), 025401 (2008)

    Article  ADS  Google Scholar 

  27. L. Devi, H.K. Malik, Self-focusing and defocusing phenomena of super-Gaussian laser beams in plasmas carrying density gradient. J. Opt. 25(3), 035401 (2023)

    Article  ADS  Google Scholar 

  28. M.J. Basiry, M. Sharifian, M. Hashemzadeh, M. Borhani, H. Alirezaie, Influence of rippled density and laser profile on third harmonic generation using cosh-Gaussian laser pulses in inhomogeneous magnetized plasmas. Contrib. Plasma Phys. 63, e202200196 (2023)

    Article  ADS  Google Scholar 

  29. M. Singh, R.K. Singh, R.P. Sharma, THz generation by cosh-Gaussian lasers in a rippled density plasma. EPL (Europhys. Lett.) 104(3), 35002 (2013)

    Article  ADS  Google Scholar 

  30. A. Döpp, E. Guillaume, C. Thaury, A. Lifschitz, K. Ta Phuoc, V. Malka, Energy boost in laser wakefield accelerators using sharp density transitions. Phys. Plasmas 23(5), 056702 (2016)

    Article  ADS  Google Scholar 

  31. V. Sharma, V. Thakur, A. Singh, N. Kant, Third harmonic generation of a relativistic self-focusing laser in plasma under exponential density ramp. Zeitschrift fur Naturforschung Sect. A J. Phys. Sci. 77(4), 323–328 (2022)

    Article  ADS  Google Scholar 

  32. D.N. Gupta, K. Gopal, I.H. Nam, V.V. Kulagin, H. Suk, Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32(3), 449–454 (2014)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS analyzed derivation, methodology, analytical modeling, graph plotting, and numerical analysis; VT performed supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Thakur, V. Lasers wakefield acceleration in underdense plasma with ripple plasma density profile. J Opt (2023). https://doi.org/10.1007/s12596-023-01548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01548-5

Keywords

Navigation