Skip to main content
Log in

Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Recently, co-propagating two-color laser pulses have been extensively used to study the attosecond pulse generation, for controlling the electron motion at femtosecond and attosecond time scales, for high harmonic generation in solids and gases, etc. In this paper, we have studied the co-propagational effect of two Gaussian laser pulses of different pulse length and frequency (\({\upomega }_{1}\approx 2{\upomega }_{p}\) and \({\upomega }_{2}\approx {\upomega }_{p}\)) through under-dense plasma. Plasma density satisfies the condition of beating to generate maximum wakefield, i.e., the difference of frequency is equal to the frequency of first pulse and equal to plasma frequency \({(\upomega }_{1}-{\upomega }_{2}\approx {\upomega }_{p})\) also. Longitudinal force on electron and laser wakefield developed in plasma are studied analytically. Under the above-stated conditions, approximately 6 times stronger longitudinal force is experienced by the electrons as compared to individual single pulse. An enhanced laser wakefield has also been observed. This study is carried out for optimizing the parameters of lasers and plasma medium to maximize the electron energy gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43(4), 267–270 (1979)

    Article  ADS  Google Scholar 

  2. H.G. Muller, P.H. Bucksbaum, D.W. Schumacher, A. Zavriyev, Above-threshold ionisation with a two-colour laser field. J. Phys. B At. Mol. Opt. Phys. 23, 2761–2769 (1990)

    Article  ADS  Google Scholar 

  3. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004)

    Article  ADS  Google Scholar 

  4. B.B. Pollock, C.E. Clayton, J.E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S.H. Glenzer, K. Herpoldt, W. Lu, K.A. Marsh, J. Meinecke, W.B. Mori, A. Pak, T.C. Rensink, J.S. Ross, J. Shaw, G.R. Tynan, C. Joshi, DH froula demonstration of a narrow energy spread, 0.5 GeV electron beam from a two-stage laser wakefield accelerator. Phys Rev Lett 107, 045001 (2011)

    Article  ADS  Google Scholar 

  5. H.T. Kim, K.H. Pae, H.J. Cha, J. Kim, T.J. Yu, J. Sung, S. Lee, T.M. Jeong, J. Lee, Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. Phys. Rev. Lett. 111, 165002 (2013)

    Article  ADS  Google Scholar 

  6. F. Albert, A.G.R. Thomas, S.P.D. Mangles, S. Banerjee, S. Corde, A. Flacco, M. Litos, D. Neely, J. Vieira, Z. Najmudin, R. Bingham, C. Joshi, T. Katsouleas, Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Phys Controlled Fus 56, 084015 (2014)

    Article  ADS  Google Scholar 

  7. F. Albert, A.G.R. Thomas, Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controlled Fus 58, 103001 (2016)

    Article  ADS  Google Scholar 

  8. S. Li, N.A.M. Hafz, M. Mirzaie, T. Sokollik, M. Zeng, M. Chen, Z. Sheng, J. Zhang, Enhanced single-stage laser-driven electron acceleration by self-controlled ionization injection. Opt Express. 22, 24 (2014)

    Article  Google Scholar 

  9. S. Krishnagopal, A.K. Upadhyay, D. Sarkar, P. Jha, S.A. Samant, Simulation of electron acceleration by two laser pulses propagating in a homogenous plasma, Conference Proceedings C100523. THPEC002 (2010)

  10. P. Jha, A. Saroch, N.K. Verma, Wakefield generation via two color laser pulses. Phys. Plasmas 20, 053102 (2013)

    Article  ADS  Google Scholar 

  11. H.T. Kim, K.H. Pae, H.J. Cha, J. Kim, T.J. Yu, J.H. Sung, S.K. Lee, T.M. Jeong, J. Lee, Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. Phys Rev Lett 111, 165002 (2013)

    Article  ADS  Google Scholar 

  12. R.K. Mishra, A. Saroch, P. Jha, Simulation study of wakefield generation by two color laser pulses propagating in homogeneous plasma. Phys Plasmas. 20, 0945029 (2013)

    Google Scholar 

  13. X.L. Xu, Y.P. Wu, C.J. Zhang, F. Li, Y. Wan, J.F. Hua, C.H. Pai, W. Lu, Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths. Phys Rev Spec Top Accel beams 17, 061301 (2014)

    Article  ADS  Google Scholar 

  14. L.L. Yu, E. Esarey, C.B. Schroeder, J.L. Vay, C. Benedetti, C.G.R. Geddes, M. Chen, W.P. Leemans, Two-color laser-ionization injection. Phys. Rev. 112, 125001 (2014)

    Google Scholar 

  15. M. Zeng, M. Chen, L.L. Yu, W.B. Mori, Z.M. Sheng, B. Hidding, D.A. Jaroszynski, J. Zhang, Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers. Phys Rev. Lett 114, 084801 (2015)

    Article  ADS  Google Scholar 

  16. F. Albert, A.G.R. Thomas, Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controlled Fus 58, 103001 (2016)

    Article  ADS  Google Scholar 

  17. M. Yeung, S. Rykovanov, J. Bierbach, L. Li, E. Eckner, S. Kuschel, A. Woldegeorgis, C. Rödel, A. Sävert, G.G. Paulus, M. Coughlan, B. Dromey, M. Zepf, Experimental observation of attosecond control over relativistic electron bunches with two-colour fields. Nat Photon 11, 32–35 (2017)

    Article  ADS  Google Scholar 

  18. X. Zhang, V. Khudik, A. Bernstein, M. Downer, G. Shvets, Two-color hybrid laser wakefield and direct laser accelerator. AIP Conf. Proc. 1812, 040011 (2017)

    Article  Google Scholar 

  19. V.B. Pathak, H.T. Kim, J. Vieira, L.O. Silva, C.H. Nam, All optical dual stage laser wakefield acceleration driven by two-color laser pulses. Nat Sci Rep. 8, 1177 (2018)

    Google Scholar 

  20. S. Li, G. Li, Q. Ain, M.S. Hur, A.C. Ting, V.V. Kulagin, C. Kamperidis, N.A.M. Hafz, A laser-plasma accelerator driven by two-color relativistic femtosecond laser pulses. Sci. Adv. 5, 7940 (2019)

    Article  ADS  Google Scholar 

  21. N.A.M. Hafz, G. Li, S. Li, Q. Ain, K. Gao, M. Saeed, D. Papp, J. Zhu, C. Kamperidis, Enhanced laser wakefield acceleration using dual-color relativistic pulses. Plasma Phys. Control Fus 62, 095012 (2020)

    Article  ADS  Google Scholar 

  22. J. Singh, J. Rajput, N. Kant, S. Kumar, Simulation study of two-color laser wakefield acceleration, advanced materials and radiation physics-2020. AIP Conf. Proc. 2352, 0500431–0500434 (2020)

    Google Scholar 

  23. V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. 11, 1–8 (2016)

    Article  Google Scholar 

  24. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17(1), 1–8 (2021)

    Google Scholar 

  25. V. Thakur, N. Kant, Stronger self-focusing of cosh-Gaussian laser beam under exponential density ramp in plasma with linear absorption. Optik 183, 912–917 (2019)

    Article  ADS  Google Scholar 

  26. V. Thakur, N. Kant, Resonant second harmonic generation by a chirped laser pulse in a semiconductor. Optik 130, 525–530 (2017)

    Article  ADS  Google Scholar 

  27. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 128112 (2022)

    Article  Google Scholar 

  28. M.A. Wani, V. Thakur, H.S. Ghotra, H.S. Kant, Effect of axial electron temperature and plasma density ramp on self-focusing/defocusing of a laser beam in plasma. Optik. 192, 162963 (2019)

    Article  ADS  Google Scholar 

  29. N. Kant, A. Singh, V. Thakur, Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part. Beams 37(4), 442–447 (2019)

    Article  ADS  Google Scholar 

  30. A. Varma, A. Kumar, Excitation of lower hybrid wave by counterpropagating cosh Gaussian laser beams in a magnetized plasma. Optik 231, 166326 (2021)

    Article  ADS  Google Scholar 

  31. A. Varma, A. Kumar, Electron Bernstein wave excitation and heating by nonlinear interactions of Laguerre and Hermite Gaussian laser beams in a magnetized plasma. Optik 228, 166212 (2021)

    Article  ADS  Google Scholar 

  32. A. Varma, A. Kumar, Electron Bernstein wave excitation by beating of two copropagating super-Gaussian laser beam in a collisional nanocluster plasma. Optik 240, 166872 (2021)

    Article  ADS  Google Scholar 

  33. A. Kumar, A. Kumar, A. Varma, Excitation of electron Bernstein waves by beating of two cosh-Gaussian laser beams in a collisional plasma. Laser Phys. 31, 106001 (2021)

    Article  ADS  Google Scholar 

  34. A. Kumar, S.P. Mishra, A. Kumar, A. Varma, Electron Bernstein wave aided cosh-Gaussian laser beam absorption in plasma. Optik 273, 170436 (2023)

    Article  ADS  Google Scholar 

  35. A. Varma, A. Kumar, Electron Bernstein wave aided heating of collisional nanocluster plasma by nonlinear interactions of two super-Gaussian laser beams. Laser Phys. 32, 016001 (2021)

    Article  ADS  Google Scholar 

  36. P. Kad, A. Singh, Coupled effect of spatio-temporal variation of Laguerre–Gaussian laser pulse on electron acceleration in magneto-plasma. Waves Random Complex Media (2023). https://doi.org/10.1080/17455030.2022.2121011

    Article  Google Scholar 

  37. P. Kad, A. Singh, Electron acceleration and spatio-temporal variation of Laguerre–Gaussian laser pulse in relativistic plasma. Eur. Phys. J. Plus 137, 885 (2022)

    Article  Google Scholar 

  38. P. Kad, A. Singh, Spatio-temporal variation of Laguerre-Gaussian laser pulse and its effect on electron acceleration. Chin. J. Phys. 82, 171–181 (2023)

    Article  MathSciNet  Google Scholar 

  39. P. Kad, A. Singh, Combined effect of spatio-temporal dynamics of laser pulse on electron acceleration in relativistic plasma. IEEE Trans. Plasma Sci. 50(6), 1518–1523 (2022)

    Article  ADS  Google Scholar 

  40. P. Sprangle, E. Esarey, A. Ting, G. Joyce, Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 2146 (1988)

    Article  ADS  Google Scholar 

  41. E. Esarey, P. Sprangle, J. Krall, A. Ting, Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron 33–11, 1879–1914 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VS: derivation, methodology, analytical modeling and graph plotting; SK: numerical analysis; NK: numerical analysis and result discussion; VT: supervision, reviewing and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kumar, S., Kant, N. et al. Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J Opt 53, 1137–1143 (2024). https://doi.org/10.1007/s12596-023-01250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01250-6

Keywords

Navigation