Skip to main content
Log in

Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Terahertz (THz) has emerged as a significant field of study because to its extensive practical applications in various domains such as medical diagnosis, remote sensing, defence, and short-range wireless communication, among others. Numerous endeavours have been undertaken to achieve a tuneable and energy-efficient terahertz (THz) source. This study examines the co-propagation of two Hermite-cosh-Gaussian laser pulses within an underdense plasma medium characterized by a slanting up density profile. The interaction between laser and plasma exhibits nonlinear characteristics, leading to the creation of THz radiation with high efficiency. An analytical study is conducted to examine the relationship between the conversion efficiency of terahertz (THz) waves and characteristics such as plasma frequency, Hermite polynomial mode index (s), decentred parameter (b), and electron collisional frequency (\({\gamma }_{\mathrm{en}}\)). The results show that as we move in off-resonant direction, THz conversion efficiency decreases and becomes almost zero for normalized THz frequency and normalized collisional frequency values \(>1.6\) and \(>4\), respectively. THz conversion efficiency increases with increase in Hermite polynomial mode index values for \(s=\mathrm{0,1},2\). The suggested method is particularly useful for producing high intensity, tuneable, energy-efficient THz radiation source by adjusting the value of decentred parameter and Hermite polynomial mode index values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. B. Ferguson, X.C. Zhang, Materials for terahertz science and technology. Nature Mater. 1(1), 26–33 (2002)

    Article  ADS  Google Scholar 

  2. M.J. Fitch, R. Osiander, Terahertz waves for communication and sensing. Johns Hopkins APL Tech. Dig. 25, 348 (2004)

    Google Scholar 

  3. H. Zhong, A. Redo-Sanchez, X.C. Zhang, Identification and classification of chemicals using terahertz reflective spectroscopic focal plane imaging system. Opt. Express 14, 9130 (2006)

    Article  ADS  Google Scholar 

  4. P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438 (2004)

    Article  ADS  Google Scholar 

  5. Y.C. Shen, T. Lo, P.F. Taday, B.E. Cole, W.R. Tribe, M.C. Kemp, Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116 (2005)

    Article  ADS  Google Scholar 

  6. J. Orenstein, A.J. Millis, Terahertz time domain spectroscopy. Science 288, 468 (2000)

    Article  ADS  Google Scholar 

  7. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, Coherent terahertz control of antiferromagnetic spin waves. Nature Photon 5, 31–34 (2010)

    Article  ADS  Google Scholar 

  8. J. Son, Terahertz electromagnetic interactions with biological matter and their application. Appl. Phys. 105, 102033 (2009)

    Article  Google Scholar 

  9. Y. Sun, S. Combrié, F. Bretenaker, A. Rossi, Mode locking of the Hermite-Gaussian Modes of a nano laser. Phys. Rev. Lett. 123, 233901 (2019)

    Article  ADS  Google Scholar 

  10. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant excitation of THz radiations by the interaction of amplitude-modulated laser beams with an anharmonic CNTs in the presence of static DC electric and magnetic fields. Chin. J. Phys. 78, 453–462 (2022)

    Article  Google Scholar 

  11. V. Thakur, N. Kant, Stronger self-focusing of cosh-Gaussian laser beam under exponential density ramp in plasma with linear absorption. Optik 183, 912–917 (2019)

    Article  ADS  Google Scholar 

  12. V. Thakur, N. Kant, Resonant second harmonic generation by a chirped laser pulse in a semiconductor. Optik 130, 525–530 (2017)

    Article  ADS  Google Scholar 

  13. V. Thakur, N. Kant, S. Vij, Effect of cross focusing of two laser beams on THz radiation in graphite nanoparticles with density ripple. Physica Scripta 95(4), 045602 (2020)

    Article  ADS  Google Scholar 

  14. S. Vij, N. Kant, V. Thakur, Resonant enhancement of THz radiation through vertically aligned carbon nanotubes array by applying wiggler magnetic field. Plasmonics 14, 1051 (2019)

    Article  Google Scholar 

  15. A. Mehta and N. Kant, (2019) Terahertz radiation generation driven by the frequency chirped laser pulse in magneto-active plasma, proc. SPIE 10917, Terahertz, RF, Milimeter, and Sub-milimeter-Wave Technology and Applications 25, 16, 9170R

  16. D.J. Cook, R.M. Hochstrasser, Intense terahertz pulses by four wave rectification in air. Opt. Lett. 25(16), 1210–1212 (2000)

    Article  ADS  Google Scholar 

  17. A. Proulx, A. Talebpour, S. Petit, S.L. Chin, Fast pulsed electric field created from the self-generated filament of a femtosecond Ti: Sapphire laser pulse in air. Opt. Commun. 174, 305–309 (2000)

    Article  ADS  Google Scholar 

  18. X. Xie, J. Dai, X.-C. Zhang, Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96(7), 075005 (2006)

    Article  ADS  Google Scholar 

  19. A. Houard, Y. Liu, B. Prade, V.T. Tikhonchuk, A. Mysyrowicz, Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100(25), 255006 (2008)

    Article  ADS  Google Scholar 

  20. Z. Zhang, Y. Chen, M. Chen, J. Yu, Z. Sheng, J. Zhang, Controllable terahertz radiation from a linear-dipole array formed by a two-color laser filament in air. Phys. Rev. Lett. 117(24), 243901 (2016)

    Article  ADS  Google Scholar 

  21. V.B. Gildenburg, N.V. Vvedenskii, Optical-to-THz wave conversion via excitation of plasma oscillations in the tunnelling-ionization process. Phys. Rev. Lett. 98(24), 245002 (2007)

    Article  ADS  Google Scholar 

  22. H.-C. Wu, J. Meyerter-Vehn, Z.-M. Sheng, Phase-sensitive terahertz emission from gas targets irradiated by few-cycle laser pulses. New J. Phys. 10(4), 04300 (2008)

    Article  Google Scholar 

  23. M. Chen, A. Pukhov, X.Y. Peng, O. Willi, Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases. Phys. Rev. E 78(4), 046406 (2008)

    Article  ADS  Google Scholar 

  24. W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, K. Mima, Strong terahertz pulse generation by chirped laser pulses in tenuous gases. Opt. Express 16(21), 16999–17006 (2008)

    Article  ADS  Google Scholar 

  25. K.Y. Kim, J.H. Glownia, A.J. Taylor, G. Rodriguez, Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 15(8), 4577–4584 (2007)

    Article  ADS  Google Scholar 

  26. N. Kant, V. Sharma, V. Thakur, Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt. Quant. Electron. 52(10), 1–9 (2020)

    Google Scholar 

  27. V. Sharma, V. Thakur, N. Kant, Hermite-cosh-Gaussian laser-induced third harmonic generation in plasma. Opt. Quant. Electron. 53, 281 (2021)

    Article  Google Scholar 

  28. V. Thakur, N. Kant, Influence of linear absorption and density ramp on self-focusing of the Hermite-Gaussian chirped pulse laser in plasma. Opt. Quant. Electron. 53(1), 1–10 (2021)

    MathSciNet  Google Scholar 

  29. V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. 11, 1–8 (2016)

    Article  Google Scholar 

  30. N. Kant, S. Vij, S.K. Chakravarti, J.P. Kushwaha, V. Thakur, Relativistic self-focusing of hermite-cosh-Gaussian laser beam in magneto-plasma with exponential plasma density ramp. Commun. Theor. Phys. 71, 1469 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Chaudhary, M.K.P. Singh, U. Verma, A.K. Malik, Radially polarized terahertz (THz) generation by frequency difference of Hermite-cosh-Gaussian lasers in hot electron-collisional plasma. Opt. Lasers Eng. 134, 106257 (2020)

    Article  Google Scholar 

  32. V. Thakur, S. Vij, V. Sharma, N. Kant, Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik 171, 523–528 (2018)

    Article  ADS  Google Scholar 

  33. A.K. Malik, K.P. Singh, B.P. Manendra, S. Singh, S. Chaudhary, U. Verma, Terahertz radiation generation by frequency mixing of Hermite–cosh–Gaussian laser beams in density-modulated cold magnetized plasma. IEEE Trans. Plasma Sci. 49(9), 3022–3028 (2021)

    Article  ADS  Google Scholar 

  34. T.Q. Jin, C.D. Ming, Y. Yong-Ai, H. Qi-Quan, Propagation properties of off-axis Hermite–cosh–Gaussian beam combinations through a first-order optical system. Chinese Physics 15(11), 2609 (2006)

    Article  ADS  Google Scholar 

  35. M.C. Gurjar, K. Gopal, D.N. Gupta, V.V. Kulagin, H. Suk, High-Field coherent terahertz radiation generation from chirped laser pulse Interaction with plasmas. IEEE Trans. Plasma Sci. 48(10), 3727–3734 (2020)

    Article  ADS  Google Scholar 

  36. F. Bakhtiari, S. Golmohammady, M. Yousefi, F.D. Kashani, B. Ghafary, Generation of terahertz radiation in collisional plasma by beating of two dark hollow laser beams. Laser Part. Beams 33, 463 (2015)

    Article  ADS  Google Scholar 

  37. K. Mori, Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams. Appl. Phys. Lett. 111(24), 241107 (2017)

    Article  Google Scholar 

  38. A. Verma, S.P. Mishra, A. Kumar, A. Kumar, Electron Bernstein, Wave aided Hermite cosh-Gaussian laser beam absorption in collisional plasma. Laser Phys. Lett. 20, 7 (2023)

    Google Scholar 

  39. P. Kad, V. Rana, A. Singh, Gaussian laser beam in plasma and terahertz generation. Optic 274, 170498 (2023)

    Google Scholar 

  40. A. Kumar et al., Plasma wave aided heating of collisional nanocluster plasma by nonlinear interaction of two high power laser beams. Opt. Quant. Electron. 54, 11 (2022)

    Article  Google Scholar 

  41. N. Gupta, S.B. Bhardwaj, Nonlinear interaction of Bessel-Gauss laser beams with plasmas with axial temperature ramp. J. Opt. 51, 4 (2022)

    Article  Google Scholar 

  42. N. Gupta, S. Kumar, S.B. Bhardwaj, Stimulated Raman scattering of self-focused elliptical q-Gaussian laser beam in plasma with axial density ramp: effect of ponderomotive force. J. Opt. 51, 4 (2022)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HKM contributed to derivation, methodology, analytical modelling, and graph plotting; VS contributed to numerical analysis; NK contributed to numerical analysis and result discussion; and VT contributed to supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Consent to participate

Not applicable.

Consent for Publication

Not applicable

Ethical approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midha, H.K., Sharma, V., Kant, N. et al. Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J Opt (2023). https://doi.org/10.1007/s12596-023-01413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01413-5

Keywords

Navigation