Skip to main content
Log in

Exploring the potential of cosh-Gaussian pulses for electron acceleration in magnetized plasma

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This work investigates the acceleration of electrons in a homogeneous magnetized plasma that is both cold and collisionless. We obtained an increase in energy by stimulating laser wakefield excitation using a cosh-Gaussian laser pulse. The analysis shows a significant rise in both wakefield excitation and maximum gain in electron energy with increasing pulse strength. The amount of the external magnetic field, pulse length, and parameter \({w}_{0}\) are essential for achieving higher acceleration and a greater amplitude wakefield, together with pulse intensity. By carefully adjusting these various parameters, we can create a very powerful wakefield for accelerating electrons. By utilizing precise normalized parameters, we have successfully attained an energy gain of up to 433.80 MeV in this study. The findings of this study on laser-driven electron acceleration may be valuable for researchers involved in the rapidly advancing field of laser science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. K. Tian, X. Xia, Self-focusing/defocusing of Hermite-Sinh-Gaussian laser beam in underdense inhomogeneous plasmas. Laser Part. Beams 2022, 1–12 (2022)

    Article  ADS  Google Scholar 

  2. V. Thakur, S. Kumar, N. Kant, Self-focusing of a Bessel–Gaussian laser beam in plasma under density transition. J. Nonlinear Opt. Phys. Mater. (2022)

  3. V. Thakur, S. Vij, V. Sharma, N. Kant, Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (Stuttg) 171, 523–528 (2018)

    Article  ADS  Google Scholar 

  4. N. Kant, A. Singh, V. Thakur, Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part. Beams 37(4), 442–447 (2019)

    Article  ADS  Google Scholar 

  5. M. Singh, D.N. Gupta, Relativistic third-harmonic generation of a laser in a self-sustained magnetized plasma channel. IEEE J. Quantum Electron. 50(6), 491–496 (2014)

    Article  ADS  Google Scholar 

  6. H. K. Midha, V. Sharma, N. Kant, V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023)

  7. H. K. Midha, V. Sharma, N. Kant, V. Thakur, Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation. J. Opt. (2023)

  8. V. Thakur, S. Kumar, Terahertz generation in ripple density hot plasma under the influence of static magnetic field. J. Opt. (2024)

  9. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron.Astrophys. Astron. 43(1), 30 (2022)

    Article  ADS  Google Scholar 

  10. S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation. Waves Random Complex Media 1–13 (2022)

  11. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17(1), 381–388 (2022)

    Article  Google Scholar 

  12. S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt. Quantum. Electron. 55(3), 281 (2023)

    Article  Google Scholar 

  13. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun.Commun. 513, 128112 (2022)

    Article  Google Scholar 

  14. S. Kumar, V. Thakur, N. Kant, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98(8), 085506 (2023)

    Article  ADS  Google Scholar 

  15. S. Kumar, N. Kant, V. Thakur, Magnetically tuned THz radiation through the HA-HA-CNTs under the effect of a transverse electric field, Indian J. Phys. (2023)

  16. V. Thakur, N. Kant, S. Kumar, THz field enhancement under the influence of cross-focused laser beams in the m-CNTs. Trends Sci. 20(6), 5284 (2023)

    Article  Google Scholar 

  17. X. Zhang, V. Khudik, A. Bernstein, M. Downer, G. Shvets, Two-color hybrid laser wakefield and direct laser accelerator, in AIP Conf. Proc. 1812, 040011-1–040011-5 (2017)

  18. H.S. Ghotra, Laser wakefield and direct laser acceleration of electron by chirped laser pulses. Optik (Stuttg) 260, 169080 (2022)

    Article  ADS  Google Scholar 

  19. V. Sharma, N. Kant, V. Thakur, Electron acceleration in collisionless plasma: comparative analysis of laser wakefield acceleration using Gaussian and cosh-squared-Gaussian laser pulses. J. Opt. (2024)

  20. V. Sharma, N. Kant, V. Thakur, Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma. Opt. Quantum. Electron. 56(4), 601 (2024)

    Article  Google Scholar 

  21. V. Sharma, N. Kant, V. Thakur, Optimizing laser-driven electron acceleration with sinh-squared Gaussian pulses. J. Opt. (2024)

  22. K. Gopal, D.N. Gupta, A. Jain, M.S. Hur, H. Suk, Investigation of electron beam parameters in laser wakefield acceleration using skewed laser pulse and external magnetic field. Curr. Appl. Phys.. Appl. Phys. 25, 82–89 (2021)

    Article  ADS  Google Scholar 

  23. A. Jain, D.N. Gupta, Improvement of electron beam quality in laser wakefield acceleration by a circularly-polarized laser pulse. Plasma Phys. Control Fusion 63(7), 075007 (2021)

    Article  ADS  Google Scholar 

  24. V. Sharma, V. Thakur, Analyzing electron acceleration mechanisms in magnetized plasma using Sinh–Gaussian pulse excitation. J. Opt. (2024)

  25. V. Sharma, N. Kant, V. Thakur, Laser wakefield effect: a comparative study of Gaussian and Sinh-Gaussian pulse characteristics. Braz. J. Phys. 54(3), 68 (2024)

    Article  Google Scholar 

  26. V. Sharma, H. K. Midha, N. Kant, V. Thakur, Enhancing electron acceleration with sinh-squared Gaussian pulse under external magnetic fields. J. Opt. (2024)

  27. F. Albert, Principles and applications of x-ray light sources driven by laser wakefield acceleration. Phys. Plasmas 30(5) (2023)

  28. F. Albert, A.G.R. Thomas, Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control Fusion 58(10), 103001 (2016)

    Article  ADS  Google Scholar 

  29. T. Tajima, X.Q. Yan, T. Ebisuzaki, Wakefield acceleration. Rev. Mod. Plasma Phys. 4(1), 7 (2020)

    Article  ADS  Google Scholar 

  30. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009)

    Article  ADS  Google Scholar 

  31. V. Sharma, V. Thakur, A comprehensive study of magnetic field-induced modifications in sin-Gaussian pulse-driven laser wakefield acceleration. J. Opt. (2024)

  32. E. Esarey, P. Sprangle, S. Member, J. Krall, A. Ting, Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24(2) (1996)

  33. P. Sprangle, E. Esarey, A. Ting, G. Joyce, Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53(22), 2146–2148 (1988)

    Article  ADS  Google Scholar 

  34. V. Sharma, V. Thakur, Enhanced laser wakefield acceleration utilizing Hermite–Gaussian laser pulses in homogeneous plasma. J. Opt. (2023)

  35. K.P. Singh, V.L. Gupta, L. Bhasin, V.K. Tripathi, Electron acceleration by a plasma wave in a sheared magnetic field. Phys. Plasmas 10(5), 1493–1499 (2003)

    Article  ADS  Google Scholar 

  36. M. Abedi-Varaki, M.E. Daraei, Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel-Gaussian laser pulses propagating in collisionless plasma. J. Plasma Phys. 89(1), 905890114 (2023)

    Article  Google Scholar 

  37. V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

    Article  Google Scholar 

  38. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023)

    Article  ADS  Google Scholar 

  39. V. Sharma, V. Thakur, Lasers wakefield acceleration in underdense plasma with ripple plasma density profile. J. Opt. (2023)

  40. D.N. Gupta, K. Gopal, I.H. Nam, V.V. Kulagin, H. Suk, Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32(3), 449–454 (2014)

    Article  ADS  Google Scholar 

  41. C.G.R. Geddes et al., Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100(21), 215004 (2008)

    Article  ADS  Google Scholar 

  42. N. Gupta, S. Kumar, Nonlinear interaction of elliptical q-Gaussian laser beams with plasmas with axial density ramp: effect of ponderomotive force. Opt. Quantum. Electron. 53(5), 253 (2021)

    Article  Google Scholar 

  43. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum. Electron. 55(13), 1150 (2023)

    Article  Google Scholar 

  44. Y. Heydarzadeh, H. Akou, Effect of laser polarization mode on wake wave excitation in magnetized plasma. IEEE Trans. Plasma Sci. 48(9), 3088–3097 (2020)

    Article  ADS  Google Scholar 

  45. V. Sharma, S. Kumar, N. Kant, V. Thakur, Excitation of the Laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023)

  46. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023)

  47. D. N. Gupta, M. Yadav, A. Jain, S. Kumar, Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse. Phys. Lett. Sect. A General Atomic Solid State Phys. 414 (2021)

  48. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration, Zeitschrift für Naturforschung A (2023)

  49. M. Abedi-Varaki, Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. B 32(20), 1850225 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  50. D. Oumbarek Espinos et al., Notable improvements on LWFA through precise laser wavefront tuning. Sci. Rep. 13(1), 18466 (2023)

    Article  ADS  Google Scholar 

  51. C. Aniculaesei et al., Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles. Sci. Rep. 9(1), 11249 (2019)

    Article  ADS  Google Scholar 

  52. V. Sharma, N. Kant, V. Thakur, Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration. Opt. Quantum. Electron. 56(1), 45 (2024)

    Article  Google Scholar 

  53. N.H. Mohammed, N.E. Cho, E.A. Adegani, T. Bulboaca, Geometric properties of normalized imaginary error function. Studia Universitatis Babes-Bolyai Matematica 67(2), 455–462 (2022)

    Article  MathSciNet  Google Scholar 

  54. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  55. R. Fallah, S.M. Khorashadizadeh, Electron acceleration by Bessel-Gaussian laser pulse in a plasma in the presence of an external magnetic field. High Energy Density Phys. 31, 5–12 (2019)

    Article  ADS  Google Scholar 

  56. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444(7120), 737–739 (2006)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Vivek Sharma: derivation, methodology, analytical modeling, graph plotting, numerical analysis and result discussion; Vishal Thakur: supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Thakur, V. Exploring the potential of cosh-Gaussian pulses for electron acceleration in magnetized plasma. J Opt (2024). https://doi.org/10.1007/s12596-024-01802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01802-4

Keywords

Navigation