Skip to main content
Log in

Enhancing electron acceleration with sinh-squared Gaussian pulse under external magnetic fields

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Energy enhancement of electrons is a promising field of research due to its application in various fields of scientific research. The role of various parameters like plasma density, frequency chirp, laser pulse length and external magnetic field, etc., are studied and optimized for the enhancement of energy gain and energy efficiency of the acceleration scheme. In the recent study, we have chosen a novel laser pulse profile, i.e., sinh-squared-Gaussian laser pulse to study the effect of laser electric field and externally applied transverse static magnetic field. The generated laser wake potential, wakefield, and electron energy gain have a positive correlation with laser electric field strength and the strength of the external magnetic field. In our study, with an increase in magnetic field from 0 to 40 T (1 Tesla = 10 kilogauss) and laser electric field of \(4.81\times {10}^{11}\text{ V/m}\), generated wake potential increases from 164 to 183.59 kV, laser wakefield increases from 6.18 to 6.91 GV/m, and electron energy gain increases from 162.98 to 182.45 MeV. Our research will contribute to the development of a novel scenario for the augmentation of electron energy using magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  CAS  Google Scholar 

  2. T. Tajima, X.Q. Yan, T. Ebisuzaki, Wakefield acceleration. Rev. Mod. Plasma Phys. 4(1), 7 (2020)

    Article  ADS  Google Scholar 

  3. V. Sharma, V. Thakur, Enhanced laser wakefield acceleration utilizing Hermite–Gaussian laser pulses in homogeneous plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01565-4

    Article  Google Scholar 

  4. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration. Zeitschrift für Naturforschung A (2023). https://doi.org/10.1515/zna-2023-0238

    Article  Google Scholar 

  5. S.V. Bulanov et al., On some theoretical problems of laser wake-field accelerators. J. Plasma Phys. 82(3), 905820308 (2016)

    Article  Google Scholar 

  6. W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas, Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96(16), 165002 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. X. Feng, S. Lee, The beat-wave accelerator in a relativistic electron oscillation plasma. Phys. B At. Mol. Opt. Phys. 29, L373 (1996)

    Article  ADS  CAS  Google Scholar 

  8. X. Feng, S. Lee, The beat-wave accelerator in a relativistic electron oscillation plasma. J. Phys. B At. Mol. Opt. Phys. 29(9), L373–L380 (1996)

    Article  ADS  CAS  Google Scholar 

  9. V. Thakur, S. Kumar, N. Kant, Self-focusing of a Bessel–Gaussian laser beam in plasma under density transition. J. Nonlinear Opt. Phys. Mater. (2022). https://doi.org/10.1142/S0218863523500388

    Article  Google Scholar 

  10. V. Thakur, N. Kant, Stronger self-focusing of a chirped pulse laser with exponential density ramp profile in cold quantum magnetoplasma. Optik (Stuttg) 172, 191–196 (2018)

    Article  ADS  CAS  Google Scholar 

  11. N. Kant, A. Singh, V. Thakur, Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part. Beams 37(4), 442–447 (2019)

    Article  ADS  CAS  Google Scholar 

  12. V. Thakur, N. Kant, Resonant second harmonic generation of chirped pulse laser in plasma. Optik (Stuttg) 129, 239–247 (2017)

    Article  ADS  Google Scholar 

  13. V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. 11(4), 115202 (2016)

    Article  ADS  Google Scholar 

  14. V. Sharma, V. Thakur, N. Kant, Third harmonic generation of a relativistic self-focusing laser in plasma in the presence of wiggler magnetic field. High Energy Density Phys. 32, 51–55 (2019)

    Article  ADS  Google Scholar 

  15. H. K. Midha, V. Sharma, N. Kant, V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01413-5

    Article  Google Scholar 

  16. M. Singh, R.K. Singh, R.P. Sharma, THz generation by cosh-Gaussian lasers in a rippled density plasma. EPL (Europhys. Lett.) 104(3), 35002 (2013)

    Article  ADS  Google Scholar 

  17. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43(1), 30 (2022)

    Article  ADS  CAS  Google Scholar 

  18. S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2155330

    Article  Google Scholar 

  19. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17(1), 381–388 (2022)

    Article  CAS  Google Scholar 

  20. S. Kumar, V. Thakur, N. Kant, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98(8), 085506 (2023)

    Article  ADS  Google Scholar 

  21. S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt. Quantum Electron. 55(3), 281 (2023)

    Article  CAS  Google Scholar 

  22. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 128112 (2022)

    Article  CAS  Google Scholar 

  23. V. Thakur, N. Kant, S. Kumar, THz field enhancement under the influence of cross-focused laser beams in the m-CNTs. Trends Sci. 20(6), 5284 (2023)

    Article  Google Scholar 

  24. S. Kumar, N. Kant, V. Thakur, Magnetically tuned THz radiation through the HA-HA-CNTs under the effect of a transverse electric field, Indian J. Phys. (2023)

  25. H. K. Midha, V. Sharma, N. Kant, V. Thakur, Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01563-6

    Article  Google Scholar 

  26. P.K. Shukla, Excitation of plasma waves by electromagnetic waves in magnetized plasmas. Phys. Fluids B 5(8), 3088–3091 (1993)

    Article  ADS  CAS  Google Scholar 

  27. C.E. Clayton, C. Joshi, C. Darrow, D. Umstadter, Relativistic plasma-wave excitation by collinear optical mixing. Phys. Rev. Lett. 54(21), 2343–2346 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. L.M. Gorbunov, V.I. Kirsanov, Excitation of plasma waves by an electromagnetic wave packet. JETP 93, 509–518 (1987)

    Google Scholar 

  29. H. Akou, Excitation of upper-hybrid plasma wake wave by a low-frequency extraordinary electromagnetic wave. Contrib. Plasma Phys. 61(1), e202000149 (2021)

    Article  ADS  CAS  Google Scholar 

  30. V.B. Pathak, J. Vieira, R.A. Fonseca, L.O. Silva, Effect of the frequency chirp on laser wakefield acceleration. New J. Phys. 14(2), 023057 (2012)

    Article  ADS  Google Scholar 

  31. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023)

    Article  ADS  Google Scholar 

  32. C.B. Schroeder et al., Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators. Phys. Plasmas 10(5), 2039–2046 (2003)

    Article  ADS  CAS  Google Scholar 

  33. V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

    Article  Google Scholar 

  34. V. Sharma, S. Kumar, N. Kant, V. Thakur, Excitation of the Laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01326-3

    Article  Google Scholar 

  35. D.N. Gupta, K. Gopal, I.H. Nam, V.V. Kulagin, H. Suk, Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32(3), 449–454 (2014)

    Article  ADS  CAS  Google Scholar 

  36. V. Sharma, V. Thakur, Lasers wakefield acceleration in underdense plasma with ripple plasma density profile. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01548-5

    Article  Google Scholar 

  37. A. Döpp, E. Guillaume, C. Thaury, A. Lifschitz, K. Ta Phuoc, V. Malka, Energy boost in laser wakefield accelerators using sharp density transitions. Phys. Plasmas 23(5), 056702 (2016)

    Article  ADS  Google Scholar 

  38. X. Zhang, V. Khudik, A. Bernstein, M. Downer, G. Shvets, Two-color hybrid laser wakefield and direct laser accelerator, in AIP Conf. Proc. vol. 1812, pp. 040011-1–040011 (2017)

  39. P. Jha, A. Saroch, N. Kumar Verma, Wakefield generation via two color laser pulses. Phys. Plasmas 20(5), 053102 (2013)

    Article  ADS  Google Scholar 

  40. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01250-6

    Article  Google Scholar 

  41. V.B. Pathak, H.T. Kim, J. Vieira, L.O. Silva, C.H. Nam, All optical dual stage laser wakefield acceleration driven by two-color laser pulses. Sci. Rep. 8(1), 11772 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. X. Zhang, T. Wang, V.N. Khudik, A.C. Bernstein, M.C. Downer, G. Shvets, Effects of laser polarization and wavelength on hybrid laser wakefield and direct acceleration. Plasma Phys. Control Fusion 60(10), 105002 (2018)

    Article  ADS  Google Scholar 

  43. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron. 55(13), 1150 (2023)

    Article  Google Scholar 

  44. V. Sharma, N. Kant, V. Thakur, Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration. Opt. Quantum Electron. 56(1), 45 (2024)

    Article  Google Scholar 

  45. H.R. Askari, A. Shahidani, Influence of properties of the Gaussian laser pulse and magnetic field on the electron acceleration in laser–plasma interactions. Opt. Laser Technol. 45, 613–619 (2013)

    Article  ADS  Google Scholar 

  46. A. Dezhpour, S. Jafari, H. Mehdian, Effects of magnetic wiggler field and chirped laser pulse on the wakefield amplitude and electron energy gain in a wiggler-assisted laser wakefield accelerator. Eur. Phys. J. Plus 133(11), 473 (2018)

    Article  Google Scholar 

  47. M. Abedi-Varaki, Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. B 32(20), 1850225 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  48. N.H. Mohammed, N.E. Cho, E.A. Adegani, T. Bulboaca, Geometric properties of normalized imaginary error function. Studia Universitatis Babes-Bolyai Matematica 67(2), 455–462 (2022)

    Article  MathSciNet  Google Scholar 

  49. H.R. Askari, A. Shahidani, Effect of magnetic field on production of wake field in laser–plasma interactions: Gaussian-like (GL) and rectangular–triangular (RT) pulses. Opt. Int. J. Light Electron. Opt. 124(17), 3154–3161 (2013)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS contributed to derivation, methodology, analytical modeling, and graph plotting; HKM contributed to numerical analysis, NK contributed to numerical analysis and result discussion; VT contributed to supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Midha, H.K., Kant, N. et al. Enhancing electron acceleration with sinh-squared Gaussian pulse under external magnetic fields. J Opt (2024). https://doi.org/10.1007/s12596-024-01671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01671-x

Keywords

Navigation