Skip to main content
Log in

A comprehensive study of magnetic field-induced modifications in sin-Gaussian pulse-driven laser wakefield acceleration

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The presence of an external magnetic field exerts a substantial influence on the phenomenon commonly referred to as nonlinear laser plasma interaction. External magnetic field exerts a notable influence on the efficiency of THz creation, harmonic generation, self-focusing, and electron acceleration by laser wakefield acceleration (LWFA). An analytical study is conducted to examine the impact of an external magnetic field on the acceleration of the laser wakefield. This investigation utilized a sin-Gaussian pulse profile. To achieve this objective, a fundamental second-order differential equation is generated for the wake potential. Furthermore, equations describing the wakefield generated and the resulting increase in electron energy are derived. The sin-Gaussian pulse is used in the appropriate equations to derive an analytical solution for the laser wakefield, the electron energy gain, and the laser wake potential. Curves have been constructed using experimentally tractable parameters to show the variation in LWFA. The findings of this study indicate a positive correlation between the presence of an external magnetic field and the laser wake potential, laser wakefield, and electron energy gain. Moreover, the optimization of parameters related to the sine function and the Gaussian function is achieved. Improved electron acceleration can be achieved when the value of L is equal to \(0.2 {\lambda }_{{\text{P}}}\) (\({\lambda }_{{\text{P}}}\) is plasma wavelength) and the value of \({r}_{0}\) exceeds \(0.5 {\lambda }_{{\text{P}}}\). Our findings will enable the researchers to employ an external magnetic field and improve the laser characteristics to obtain energy efficient electron acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. P. Kad, V. Rana, A. Singh, Dynamics of Hermite-Gaussian laser beam in plasma and terahertz generation. Optik (Stuttg) 274, 170498 (2023)

    Article  ADS  Google Scholar 

  2. C. Tailliez, X. Davoine, A. Debayle, L. Gremillet, L. Bergé, Terahertz pulse generation by strongly magnetized, laser-created plasmas. Phys. Rev. Lett. 128(17), 174802 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  3. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43(1), 30 (2022)

    Article  CAS  ADS  Google Scholar 

  4. S. Kumar, S. Vij, N. Kant, and V. Thakur, “Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation,” Waves in Random and Complex Media, pp. 1–13, (2022).

  5. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17(1), 381–388 (2022)

    Article  CAS  Google Scholar 

  6. S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt Quantum Electron 55(3), 281 (2023)

    Article  CAS  Google Scholar 

  7. S. Kumar, S. Vij, N. Kant, A. Mehta, V. Thakur, Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma. Eur. Phys. J. Plus 136(2), 148 (2021)

    Article  CAS  Google Scholar 

  8. H. K. Midha, V. Sharma, N. Kant, and V. Thakur, “Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation,” Journal of Optics, (2023).

  9. V. Thakur, N. Kant, Combined effect of chirp and exponential density ramp on relativistic self-focusing of hermite-cosine-gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)

    Article  ADS  Google Scholar 

  10. K. Tian, X. Xia, Self-focusing/defocusing of hermite-sinh-gaussian laser beam in underdense inhomogeneous plasmas. Laser Part. Beams 2022, 1–12 (2022)

    Article  ADS  Google Scholar 

  11. X. Feng, S. Lee, The beat-wave accelerator in a relativistic electron oscillation plasma. J. Phys. B At. Mol. Opt. Phys. 29, L373 (1996)

    Article  CAS  ADS  Google Scholar 

  12. C. Joshi et al., “Acceleration of injected electrons by the plasma beat wave accelerator,” AIP Publishing, pp. 379–410 (2008).

  13. V. Thakur, N. Kant, Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (Stuttg) 168, 159–164 (2018)

    Article  CAS  ADS  Google Scholar 

  14. V. Thakur, N. Kant, Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (Stuttg) 142, 455–462 (2017)

    Article  ADS  Google Scholar 

  15. V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. (Beijing) 11(4), 115202 (2016)

    Article  ADS  Google Scholar 

  16. M. J. Basiry, M. Sharifian, M. Hashemzadeh, M. Borhani, and H. Alirezaie, “Influence of rippled density and laser profile on third harmonic generation using cosh‐ Gaussian laser pulses in inhomogeneous magnetized plasmas,” Contributions to Plasma Physics, (2023).

  17. V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

    Article  Google Scholar 

  18. N.A.M. Hafz et al., Enhanced laser wakefield acceleration using dual-color relativistic pulses. Plasma Phys Control Fusion 62(9), 095012 (2020)

    Article  CAS  ADS  Google Scholar 

  19. V. Sharma and V. Thakur, “Lasers wakefield acceleration in underdense plasma with ripple plasma density profile,” Journal of Optics, (2023).

  20. V. Sharma, N. Kant, V. Thakur, Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration. Opt Quantum Electron 56(1), 45 (2023)

    Article  Google Scholar 

  21. V. Sharma, S. Kumar, N. Kant, and V. Thakur, “Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration,” Zeitschrift für Naturforschung A, (2023).

  22. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of Frequency Chirp and Pulse Length on Laser Wakefield Excitation in Under-Dense Plasma. Braz. J. Phys. 53(6), 157 (2023)

    Article  ADS  Google Scholar 

  23. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt Quantum Electron 55(13), 1150 (2023)

    Article  Google Scholar 

  24. A.V. Bogatskaya, N.E. Gnezdovskaia, A.M. Popov, Circularly polarized terahertz pulse generation in a plasma channel created by a uv high-intense laser pulse in the presence of a static magnetic field. Phys. Rev. E 102(4), 043202 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  25. D. N. Gupta and A. Jain, “Terahertz radiation generation by a super-Gaussian laser pulse in a magnetized plasma,” Optik (Stuttg), vol. 227, p. 165824, (2021).

  26. M. Abedi-Varaki, “The effect of the wiggler magnetic field strength on the self-focusing of an intense laser pulse propagating through a magnetized non-Maxwellian plasma,” Phys Plasmas, vol. 24, no. 12, (2017).

  27. N. Sepehri Javan and Zh. Nasirzadeh, “Self-focusing of circularly polarized laser pulse in the hot magnetized plasma in the quasi-neutral limit,” Phys Plasmas, vol. 19, no. 11, (2012).

  28. R. Prasad, R. Singh, V.K. Tripathi, Effect of an axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electrons. Laser Part. Beams 27(3), 459–464 (2009)

    Article  CAS  ADS  Google Scholar 

  29. K.P. Singh, V.L. Gupta, L. Bhasin, V.K. Tripathi, Electron acceleration by a plasma wave in a sheared magnetic field. Phys. Plasmas 10(5), 1493–1499 (2003)

    Article  CAS  ADS  Google Scholar 

  30. V. Sharma, V. Thakur, N. Kant, Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt Quantum Electron 52(10), 444 (2020)

    Article  CAS  Google Scholar 

  31. V. Thakur, S. Vij, V. Sharma, N. Kant, Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (Stuttg) 171, 523–528 (2018)

    Article  CAS  ADS  Google Scholar 

  32. S. Maity, D. Mandal, A. Vashistha, L.P. Goswami, A. Das, Harmonic generation in the interaction of laser with a magnetized overdense plasma. J. Plasma Phys. 87(5), 905870509 (2021)

    Article  Google Scholar 

  33. M. Singh, D.N. Gupta, Relativistic Third-Harmonic Generation of a Laser in a Self-Sustained Magnetized Plasma Channel. IEEE J. Quantum Electron. 50(6), 491–496 (2014)

    Article  CAS  ADS  Google Scholar 

  34. V. Sharma, S. Kumar, N. Kant, and V. Thakur, “Excitation of the Laser wakefield by asymmetric chirped laser pulse in under dense plasma,” Journal of Optics, (2023).

  35. V. Sharma, S. Kumar, N. Kant, and V. Thakur, “Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses,” Journal of Optics, (2023).

  36. F. Albert et al., Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Phys Control Fusion 56(8), 084015 (2014)

    Article  CAS  ADS  Google Scholar 

  37. F. Albert, A.G.R. Thomas, Applications of laser wakefield accelerator-based light sources. Plasma Phys Control Fusion 58(10), 103001 (2016)

    Article  ADS  Google Scholar 

  38. M. Abedi-Varaki, M.E. Daraei, Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel-Gaussian laser pulses propagating in collisionless plasma. J. Plasma Phys. 89(1), 905890114 (2023)

    Article  Google Scholar 

  39. A. Dezhpour, S. Jafari, H. Mehdian, Effects of magnetic wiggler field and chirped laser pulse on the wakefield amplitude and electron energy gain in a wiggler-assisted laser wakefield accelerator. The European Physical Journal Plus 133(11), 473 (2018)

    Article  ADS  Google Scholar 

  40. P. Jha, A. Saroch, R.K. Mishra, A.K. Upadhyay, Laser wakefield acceleration in magnetized plasma. Phys. Rev. Spec. Top. Accel Beams 15(8), 081301 (2012)

    Article  ADS  Google Scholar 

  41. V. K. Patel, R. Singh, N. Agarwal, M. Yadav, and S. C. Sharma, “Effects of Different Laser Shape Pulses on Laser Wakefield Acceleration,” 7th International Conference on Communication and Electronics Systems (ICCES), IEEE, pp. 140–146 (2022).

  42. H.R. Askari, A. Shahidani, Influence of properties of the Gaussian laser pulse and magnetic field on the electron acceleration in laser-plasma interactions. Opt. Laser Technol. 45(1), 613–619 (2013)

    Article  ADS  Google Scholar 

  43. K. Zhu, J. Zhu, Q. Su, H. Tang, Propagation Property of an Astigmatic sin–Gaussian Beam in a Strongly Nonlocal Nonlinear Media. Appl. Sci. 9(1), 71 (2018)

    Article  Google Scholar 

  44. N.H. Mohammed, N.E. Cho, E.A. Adegani, T. Bulboaca, Geometric properties of normalized imaginary error function. Studia Universitatis Babes-Bolyai Matematica 67(2), 455–462 (2022)

    Article  MathSciNet  Google Scholar 

  45. L.A. Milone, A.A.E. Milone, Evaluation of Dawson’s function. Astrophys. Space Sci. 147(1), 189–191 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  46. K. Gopal, D.N. Gupta, A. Jain, M.S. Hur, H. Suk, Investigation of electron beam parameters in laser wakefield acceleration using skewed laser pulse and external magnetic field. Curr. Appl. Phys. 25, 82–89 (2021)

    Article  ADS  Google Scholar 

  47. R. Fallah, S.M. Khorashadizadeh, Electron acceleration by Bessel-Gaussian laser pulse in a plasma in the presence of an external magnetic field. High Energy Density Phys. 31, 5–12 (2019)

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Vivek Sharma helped in derivation, methodology, analytical modeling, graph plotting, numerical analysis and result discussion; Vishal Thakur was involved in supervision, reviewing and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Thakur, V. A comprehensive study of magnetic field-induced modifications in sin-Gaussian pulse-driven laser wakefield acceleration. J Opt (2024). https://doi.org/10.1007/s12596-023-01636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01636-6

Keywords

Navigation