Skip to main content
Log in

Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Common wheat is unique in providing a large number of diverse end-products, including chapati, biscuits, bread and noodles. Grain weight and other grain traits contribute to grain yield and milling quality. Many earlier QTL studies reported at least 332 QTLs for grain traits including grain weight. We conducted a QTL analysis (composite interval mapping) of grain traits using a set of 92 recombinant inbred lines (RILs) derived from a cross between Rye Selection 111 (superior grain traits) and Chinese Spring (inferior grain traits). Forty-five QTLs for six grain traits, on 19 of the 21 chromosomes (except 2D and 3D) were identified. Nineteen of these QTLs, each for 2–3 traits were located on six chromosomes (2A, 3B, 6B, 6D, 7A and 7D). The pleiotropic nature or tight linkage of QTLs controlling different correlated traits (except the one on 6DS) was confirmed by joint MCIM. Meta-QTL (M-QTL) analysis of grain traits (including grain weight) was conducted using earlier reported QTL results (including QTLs reported in the present study). From this analysis, 23 M-QTLs were identified on eight chromosomes. These results were compared with those of our current QTL analysis and previous studies; three M-QTLs were identified as relatively more important for molecular breeding and will facilitate further work on genetic architecture and cloning of QTLs for grain traits including grain weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res 101:172–179

    Article  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chastain TG, Ward KJ, Wysocki DJ (1995) Stand establishment responses of soft white winter wheat to seedbed residue and seed size. Crop Sci 35:213–218

    Article  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  CAS  Google Scholar 

  • Diab AA, Fahmy AH, Hassan OS, Nachit MM, Momtaz OA (2007) Identification of chromosomal regions and genetic contributions of genes controlling yield and other agronomy traits in durum wheat grown under different Egyptian environmental conditions. World J Agric Sci 3:401–422

    Google Scholar 

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the durum Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Article  CAS  PubMed  Google Scholar 

  • Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    CAS  PubMed  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884

    Article  CAS  PubMed  Google Scholar 

  • Hook SCW (1984) Specific weight and wheat quality. J Sci Food Agric 35:1136–1141

    Article  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Roeder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Roeder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Kumar A (2008) Analysis of quantitative trait loci for some important traits in bread wheat. PhD Thesis, Ch. Charan Singh University, Meerut

  • Kumar N, Kulwal PL, Gaur A, Khurana P, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    Article  CAS  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Langridge P (2013) Wheat genomics and ambitious targets for future wheat production. Genome 56:545–547

    Article  PubMed  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Li HH, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Li HH, Zhang LY, Wang JK (2012) Estimation of statistical power and false discovery rate of QTL mapping methods through computer simulation. Chin Sci Bull 57:2701–2710

    Article  Google Scholar 

  • Manickavelu A, Kawaura K, Imamura H, Mori M, Ogihara Y (2011) Molecular mapping of quantitative trait loci for domestication traits and β-glucan content in a wheat recombinant inbred line population. Euphytica 177:179–190

    Article  CAS  Google Scholar 

  • Marshall D, Ellison F, Mares D (1984) Effects of grain shape and size on milling yields in wheat. I. Theoretical analysis based on simple geometric models. Aust J Agric Res 35:619–630

    Article  Google Scholar 

  • Marshall D, Mares D, Moss H, Ellison F (1986) Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Aust J Agric Res 37:331–342

    Article  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    Article  CAS  PubMed  Google Scholar 

  • Mir RR, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan HS, Gupta PK (2012) Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed 29:963–972

    Article  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  CAS  PubMed  Google Scholar 

  • Neill R (2002) Booze: the drinks bible for the 21st century. In: Sleaford A (ed) Cassell Illustrated. Octopus Publishing Group, London, 112. ISBN 1-84188-196-1

  • Novaro P, Colucci F, Venora G, D’Edgidio MG (2001) Image analysis of whole grains: a noninvasive method to predict semolina yield in durum wheat. Cereal Chem 78:217–221

    Article  CAS  Google Scholar 

  • Okamoto Y, Nguyen AT, Yshioka M, Iehisa CMJ, Takum S (2013) Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breed Sci 63:423–429

    Article  PubMed Central  PubMed  Google Scholar 

  • Palmer JJ (2001) How to brew: everything you need to know to brew beer right the first time. Defenestrative Pub Co., Dallas, 233. ISBN 0-9710579-0-7

  • Peng JH, Ronin Y, Fahima T, Roder MS, Li YC, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Tuberosa R, Sanguineti M-C, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. KTK Scientific Publishers, Tokyo

    Google Scholar 

  • Salina E, Börner A, Leonova I, Korzun V, Laikova L, Maystrenko O, Röder MS (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100:686–689

    Article  CAS  Google Scholar 

  • Singh PK, Gonzalez-Hernandez JL, Mergoum M, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2006) Identification and molecular mapping of a gene conferring resistance to Pyrenophora tritici-repentis race 3 in tetraploid wheat. Phytopathology 96:885–889

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Fedak G, Clarke J, Cao WG (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49:1586–1593

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  CAS  PubMed  Google Scholar 

  • Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li R-J, Wang HG, Li SS (2008) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  Google Scholar 

  • Tyagi S, Gupta PK (2012) Meta-analysis of QTLs involved in pre-harvest sprouting tolerance and dormancy in bread wheat. Triticeae Genomics Genet 3:9–24

    Google Scholar 

  • Verma V, Worland AJ, Sayers EJ, Fish L, Caligari PDS, Snape JW (2005) Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed 124:234–241

    Article  CAS  Google Scholar 

  • Visscher PM, Haley CS, Thompson RD (1996) Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    Article  CAS  PubMed  Google Scholar 

  • Williams K, Munkvold J, Sorrells M (2013) Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica 190:99–116

    Article  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li Wei (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52:996–1007

    Article  PubMed  Google Scholar 

  • Zhang K, Wang J, Zhang L, Rong C, Zhao F, Peng T, Li H, Cheng D, Liu X, Qin H, Zhang A, Tong Y (2012) Association analysis of genomic loci important for grain weight control in elite common wheat varieties cultivated with variable water and fertilizer supply. PLoS One 8(3):e57853

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Department of Biotechnology (DBT), Government of India, New Delhi, for financial assistance. PKG was awarded the position of National Academy of Sciences India (NASI)—Senior Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Gupta.

Additional information

S. Tyagi and R. R. Mir have contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S., Mir, R.R., Balyan, H.S. et al. Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica 201, 367–380 (2015). https://doi.org/10.1007/s10681-014-1217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1217-y

Keywords

Navigation