Skip to main content
Log in

Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Digital image analysis (DIA) is widely used for describing plant organ shape. However, the various types of shape descriptors that can be generated using DIA may identify different loci in genetic analyses. The purpose of this study was to evaluate two different DIA approaches to quantifying wheat seed shape for exploring trait correlations and quantitative trait loci (QTL) mapping. Phenotypic data were produced using the software programs ImageJ (National Institutes of Health, USA, http://rsbweb.nih.gov/ij/) and SHAPE (Hiroyoshi Iwata, http://lbm.ab.a.u-tokyo.ac.jp/≃iwata/shape/). ImageJ generates measures of length, width, perimeter, and area that can be used to describe dimensions of objects, whereas SHAPE generates elliptic Fourier descriptors (EFDs) to capture shape variation such as roughness, asymmetric skewing, or other two-dimensional aspects not encompassed by axes or distinctions in overall object area. There were significant differences in the results of the QTL analysis depending on the DIA software used. The use of EFDs to characterize horizontal measures of seed shape in wheat identified more QTL with higher LOD scores than length to width ratio. Additionally, the entire three dimensional shape of the seed described using two images in different orientations was shown to identify seed shape QTL that co-located with flour yield (FLYLD) and would go undetected based solely on a two dimensional image of the seed. Both methods identified QTL for length, width, thickness, and vertical perimeter that were co-localized with QTL for FLYLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews L (2002) Quality characteristics of soft wheat cultivars. USDA ARS Soft Wheat Quality Laboratory, Wooster

    Google Scholar 

  • Barnard AD, Labuschagne MT, van Nierkerk HA (2002) Heritability estimates of bread wheat quality traits in the Western Cape province of South Africa. Euphytica 127:115–122

    Article  CAS  Google Scholar 

  • Breseghello F, Sorrels ME (2005) Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci 45:1685–1695

    Article  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res 101:172–179

    Article  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft x hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Cober ER, Voldeng HD, Fregeau-Reid JA (1997) Heritability of seed shape and seed size in soybean. Crop Sci 37:1767–1769

    Article  Google Scholar 

  • Dana W, Ivo W (2008) Computer image analysis of seed shape and seed color for flax cultivar description. Comput Electron Agric 61:126–135

    Article  Google Scholar 

  • De Souza N (2010) High-throughput phenotyping. Nat Methods 7:36

    Article  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Roder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    Article  CAS  Google Scholar 

  • Diao X, Furuno T, Fujita M (1999) Digital image analysis of cross-sectional tracheid shapes in Japanese softwoods using the circularity index and aspect ratio. J Wood Sci 45:98–105

    Article  Google Scholar 

  • Doehlert DC, McMullen MS, Jannink J, Panigrahi S, Gu H, Riveland NR (2004) Evaluation of oat kernel size uniformity. Crop Sci 44:1178–1186

    Article  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154

    Article  Google Scholar 

  • Finney PL, Andrews LC (1986) Revised microtesting for soft wheat quality evaluation. Cereal Chem 63:177–182

    Google Scholar 

  • Gegas V, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape and shape variation in wheat. Plant Cell 22:1046–1056

    Article  PubMed  CAS  Google Scholar 

  • Giura A, Saulescu NN (1996) Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89:77–80

    Article  Google Scholar 

  • Goto S, Iwata H, Shibano S, Ohya K, Suzuki A, Ogawa H (2005) Fruit shape variation in Fraxinus mandshurica var. japonica characterized using elliptic Fourier descriptors and the effect on flight duration. Ecol Res 20:733–738

    Article  Google Scholar 

  • Guo L, Ma L, Jiang H, Zeng D, Hu J, Wu L, Gao Z, Zhang G, Qian Q (2009) Genetic analysis and fine mapping of two genes for grain shape and weight in rice. J Integr Plant Biol 51:45–51

    Article  PubMed  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Himstedt M, Fricke T, Wachendorf M (2009) Determining the contribution of legumes in legume-grass mixtures using digital image analysis. Crop Sci 49:1910–1916

    Article  Google Scholar 

  • Horgan GW (2001) The statistical analysis of plant part appearance—a review. Comput Electron Agric 31:169–190

    Article  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  PubMed  CAS  Google Scholar 

  • Ibaraki Y, Kenji K (2001) Application of image analysis to plant cell suspension cultures. Comput Electron Agric 30:193–203

    Article  Google Scholar 

  • Iwata H, Niikura S, Matsuura S, Takano Y, Ukai Y (1998) Evaluation of variation of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors. Euphytica 102:143–149

    Article  Google Scholar 

  • Iwata H, Ukai Y (2002) SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J Hered 93:384–385

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Ebana K, Uga Y, Hayashi T, Jannink J (2010) Genome-wide association study of grain shape variation among Oryza sativa L. germplasm based on elliptic Fourier analysis. Mol Breed 25:203–215

    Article  CAS  Google Scholar 

  • Kozak M, Madry W (2006) Note on yield component analysis. Cereal Res Commun 34:933–940

    Article  Google Scholar 

  • Kwack MS, Kim EN, Lee H, Kim J, Chun S, Kim KD (2005) Digital image analysis to measure lesion area of cucumber anthracnose by Colletotrichum orbiculare. J Gen Plant Pathol 71:418–421

    Article  Google Scholar 

  • Marshall D, Mares D, Moss H, Ellison F (1986) Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Aust J Agric Res 37:331–342

    Article  Google Scholar 

  • Marshall D, Ellison F, Mares D (1984) Effects of grain shape and size on milling yields in wheat. I. Theoretical analysis based on simple geometric models. Aust J Agric Res 35:619–630

    Article  Google Scholar 

  • Mohler V, Lukman R, Ortiz-Islas S, William M, Worland AJ, Beem JV, Wenzel G (2004) Genetic and physical mapping of photoperiod insensitivity gene Ppd-B1 in common wheat. Euphytica 138:33–40

    Article  CAS  Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    Article  PubMed  CAS  Google Scholar 

  • Munkvold JD, Tanaka JD, Benscher D, Sorrells ME (2009) Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet 119:1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Novaro P, Colucci F, Venora G, D’Egidio MG (2001) Image analysis of whole grains: a noninvasive method to predict semolina yield in durum wheat. Cereal Chem 78:217–221

    Article  CAS  Google Scholar 

  • Ohsawa R, Tsutsumi T, Uehara H, Namai H, Ninomiya S (1998) Quantitative evaluation of common buckwheat (Fagopyrum esculentum Moench) kernel shape by elliptic Fourier descriptor. Euphytica 101:175–183

    Article  Google Scholar 

  • Peleman JD, Van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebretron C, Chinoy C, Steele N, Plijevljakusi D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Sakerr L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragus R, Royo A, Dodiq D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x Q1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Sadras VO, Egli DB (2008) Seed size variation in grain crops: allometric relationships between rate and duration of seed growth. Crop Sci 48:408–416

    Article  Google Scholar 

  • Shimoji H, Tokuda G, Tanaka Y, Moshiri B, Yamasaki H (2006) A simple method for two-dimensional color analyses of plant leaves. Russ J Plant Physiol 53:126–133

    Article  CAS  Google Scholar 

  • Shouche SP, Rastogi R, Bhagwat SG, Sainis JK (2001) Shape analysis of grains of Indian wheat varieties. Comput Electron Agric 33:55–76

    Article  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Tappan JH, Wright ME, Sistler FE (1987) Error sources in a digital image analysis system. Comput Electron Agric 2:109–118

    Article  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Hai L, Zhang X, You G, Yan C, Xiao S (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai x Yu8679. Theor Appl Genet 118:313–325

    Article  PubMed  CAS  Google Scholar 

  • White RJ, Prentice HC, Verwijst T (1988) Automated image acquisition and morphometric description. Can J Bot 66:450–459

    Article  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 62:996–1007

    Article  Google Scholar 

Download references

Acknowledgments

Keith Williams would like to thank the Cornell Department of Plant Breeding for providing financial support for this research, as well as thank Roxanne VanWormer, James Tanaka, David Benscher, and Celeste Falcon for their assistance in phenotyping. USDA-NIFA-AFRI provided grant support (Award numbers 2009-65300-05661 and 2011-68002-30029). Additional funding for this research was provided by USDA–NIFA National Research Initiative CAP grant No. 2005-05130 and by Hatch 149–449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Sorrells.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, K., Munkvold, J. & Sorrells, M. Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica 190, 99–116 (2013). https://doi.org/10.1007/s10681-012-0783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0783-0

Keywords

Navigation