Skip to main content
Log in

Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

It has long been recognized that epistasis or interactions between non-allelic genes plays an important role in the genetic control and evolution of quantitative traits. However, the detection of epistasis and estimation of epistatic effects are difficult due to the complexity of epistatic patterns, insufficient sample size of mapping populations and lack of efficient statistical methods. Under the assumption of additivity of QTL effects on the phenotype of a trait in interest, the additive effect of a QTL can be completely absorbed by the flanking marker variables, and the epistatic effect between two QTL can be completely absorbed by the four marker-pair multiplication variables between the two pairs of flanking markers. Based on this property, we proposed an inclusive composite interval mapping (ICIM) by simultaneously considering marker variables and marker-pair multiplications in a linear model. Stepwise regression was applied to identify the most significant markers and marker-pair multiplications. Then a two-dimensional scanning (or interval mapping) was conducted to identify QTL with significant digenic epistasis using adjusted phenotypic values based on the best multiple regression model. The adjusted values retain the information of QTL on the two current mapping intervals but exclude the influence of QTL on other intervals and chromosomes. Epistatic QTL can be identified by ICIM, no matter whether the two interacting QTL have any additive effects. Simulated populations and one barley doubled haploids (DH) population were used to demonstrate the efficiency of ICIM in mapping both additive QTL and digenic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baierl A, Bogdan M, Frommlet F, Futschik A (2006) On locating multiple interacting quantitative trait loci in intercross designs. Genetics 173:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Boer MP, Ter Braak CJF, Jansen RC (2002) A penalized likelihood method for mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 162:951–960

    PubMed  CAS  Google Scholar 

  • Bogdan M, Ghosh JK, Doerge RW (2004) Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics 167:989–999

    Article  PubMed  CAS  Google Scholar 

  • Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Statist Soc B 64:641–656

    Article  Google Scholar 

  • Carlborg Ö, Haley C (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  PubMed  CAS  Google Scholar 

  • Carlborg Ö, Kerje S, Schütz K, Jacobsson L, Jensen P, Andersson L (2003) A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res 13:413–421

    Article  PubMed  CAS  Google Scholar 

  • Carlborg Ö, Jacobsson L, Ahgren P, Siegel P, Andersson L (2006) Epistasis and the release of genetic variation during long-term selection. Nat Genet 38:418–420

    Article  PubMed  CAS  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experiment populations. Nat Rev Genet 3:43–52

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4 edn. Longman, Essenx

    Google Scholar 

  • Feenstra B, Skovgaard IM, Broman KW (2006) Mapping quantitative trait loci by an extension of the Haley–Knott regression method using estimating equations. Genetics 173:2269–2282

    Article  PubMed  CAS  Google Scholar 

  • Frankel WN, Schork NJ (1996) Who’s afraid of epistasis. Nat Genet 14:371–373

    Article  PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Jannink J, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    PubMed  CAS  Google Scholar 

  • Kao C-H, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1206

    PubMed  CAS  Google Scholar 

  • Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetic and analysis of quantitative Traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mackay TFC (2001) Quantitative trait loci in Drosophila. Nat Rev Genet 2:11–20

    Article  PubMed  CAS  Google Scholar 

  • Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171:2013–2027

    Article  PubMed  CAS  Google Scholar 

  • Meng X, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–268

    Article  Google Scholar 

  • Miller AJ (1990) Subset selection in regression (Monographs on statistics and applied probability 40). Chapman and Hall, London

    Google Scholar 

  • Nadeau JH, Singer JB, Martin A, Lander ES (2000) Analysis complex genetics traits with chromosome substitution strains. Nat Genet 24:221–225

    Article  PubMed  CAS  Google Scholar 

  • Piepho H-P, Gauch HG (2001) Marker pair selection for mapping quantitative trait loci. Genetics 157:433–444

    PubMed  CAS  Google Scholar 

  • Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144:805–816

    PubMed  CAS  Google Scholar 

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387

    PubMed  CAS  Google Scholar 

  • Sillanpää MJ, Arjas E (1999) Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151:1605–1619

    PubMed  Google Scholar 

  • Sillanpää MJ, Corander J (2002) Model choice in gene mapping: what and why. Trends Genet 18:302–307

    Article  Google Scholar 

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM, Falk DE, Ferguson T, Shugar LP, Legge WG, Irvine RB, Choo TM, Briggs KG, Ullrich SE, Franckowiak JD, Blake TK, Graf RJ, Dofing SM, Saghai Maroof MA, Scoles GJ, Hoffman D, Dahleen LS, Kilian A, Chen F, Biyashev RM, Kudrna DA, and Steffenson BJ (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Article  Google Scholar 

  • Uimari P, Hoeschele I (1997) Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics 146:735–743

    PubMed  CAS  Google Scholar 

  • Uimari P, Thaller G, Hoeschele I (1996) The use of multiple markers in a Bayesian method for mapping quantitative trait loci. Genetics 143:1831–1842

    PubMed  CAS  Google Scholar 

  • Wade MJ (2002) A gene’s eye view of epistasis, selection and speciation. J Evol Biol 15:337–346

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Whittaker JC, Thompson R, Visscher PM (1996) On the mapping of QTL by regression of phenotype on marker-type. Heredity 77:23–32

    Article  Google Scholar 

  • Xu S, Jia Z (2007) Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Yi N (2004) A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167:967–975

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Xu S, Allison DB (2003) Bayesian model choice and search strategies for mapping interacting quantitative trait loci. Genetics 165:867–883

    PubMed  CAS  Google Scholar 

  • Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D (2005) Bayesian model selection for genome-wide epistatic quantitative trait loci analysis. Genetics 170:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zeng Z-B (2005) Modeling quantitative trait loci and interpretation of models. Genetics 169:1711–1725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National 973 and 863 Programs of China (2006CB101700 and 2006AA10Z1B1), and the Generation Challenge Program of the Consultative Group for International Agricultural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankang Wang.

Additional information

Communicated by M. Sillanpää.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Ribaut, JM., Li, Z. et al. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116, 243–260 (2008). https://doi.org/10.1007/s00122-007-0663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0663-5

Keywords

Navigation