Skip to main content
Log in

Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Advanced backcross quantitative trait locus (AB-QTL) analysis was used to identify QTLs for yield and yield components in a backcross population developed from a cross between hard red winter wheat (Triticum aestivum L.) variety Karl 92 and the synthetic wheat line TA 4152-4. Phenotypic data were collected for agronomic traits including heading date, plant height, kernels per spike, kernel weight, tiller number, biomass, harvest index, test weight, grain yield, protein content, and kernel hardness on 190 BC2F2:4 lines grown in three replications in two Kansas environments. Severity of wheat soilborne mosaic virus (WSBMV) reaction was evaluated at one location. The population was genotyped using 151 microsatellite markers. Of the ten putative QTLs identified, seven were located on homoeologous group 2 and group 3 chromosomes. The favorable allele was contributed by cultivated parent Karl 92 at seven QTLs including a major one for WSBMV resistance, and by the synthetic parent at three QTLs: for grain hardness, kernels per spike, and tiller number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Borner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Cox TS (1998) Deepening the wheat gene pool. J Crop Prod Recent Advances 1:1–25

    Article  Google Scholar 

  • Cox TS, Sears RG, Bequette RK, Martin TJ (1995) Germplasm enhancement in winter wheat × Triticum tauschii backcross populations. Crop Sci 35:913–919

    Article  Google Scholar 

  • del Blanco IA, Rajaram S, Kronstad WE, Reynolds MP (2000) Physiological performance of synthetic hexaploid wheat-derived populations. Crop Sci 40:1257–1263

    Article  Google Scholar 

  • del Blanco IA, Rajaram S, Kronstad WE (2001) Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci 41:670–676

    Article  Google Scholar 

  • Fritz AK, Cox TS, Gill BS, Sears RG (1995) Marker based analysis of quantitative traits in winter wheat × Triticum tauschii populations. Crop Sci 35: 1695–1699

    Article  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA. (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    CAS  PubMed  Google Scholar 

  • Ho JC, McCouch SR, Smith ME (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet 105:440–448

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivumL.). Theor Appl Genet 109:933–943

    Article  PubMed  CAS  Google Scholar 

  • Igrejas G, Leroy P, Charmet G, Gaborit T, Marion D, Branlard G (2002) Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet 106:19–27

    PubMed  CAS  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  CAS  Google Scholar 

  • Joshi CP, Nyguen HT (1993) RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci 93:95–103

    Article  CAS  Google Scholar 

  • Kam-Morgan LNW, Muthukrishnan S, Gill BS (1989) DNA restriction fragment length polymorphisms: a strategy for genetic mapping of the D genome of wheat. Genome 32:724–732

    CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Agric Hort (Tokyo) 19:889–890

    Google Scholar 

  • Ladizinsky G (1985) Founder effect in crop–plant evolution. Eco Bot 39:191–199

    Google Scholar 

  • Law CN, Snape JW, Worland AJ (1978) The genetic relationship between height and yield in wheat. Heredity 40:133–151

    Google Scholar 

  • Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–365

    Article  CAS  Google Scholar 

  • Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537

    Article  Google Scholar 

  • Moncada P, Martínez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89

    Google Scholar 

  • Mujeeb-Kazi A (2000) Current status of D genome based synthetic hexaploid wheats and the characterization of an elite subset. Ann Wheat Newsl 46:76–79

    Google Scholar 

  • Mujeeb-Kazi A, Fuentes-Davila G, Villareal RL, Cortes A, Rosas V, Delgado R (2001) Registration of 10 synthetic hexaploid wheat and 6 bread wheat germplasm resistant to Karnal bunt. Crop Sci. 41:274

    Article  Google Scholar 

  • Nelson JC (1997) QGene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100: 1167–1175

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal WM, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Rao GU, Ben Chaim A, Borovsky, Paran I (2003) Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annum and C. frutescens. Theor Appl Genet 106:1457–1466

    PubMed  CAS  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Roder MS, Korzun V, Gill BS, Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  CAS  Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    CAS  Google Scholar 

  • SAS Institute Inc (1999) The SAS system for Windows, release 8.00. SAS Institute, Cary, NC

  • Sears RG, Martin TJ, Cox TS, Chung OK, Curran SP, Heer WF, Witt MD (1997) Registration of Karl 92 wheat. Crop Sci 37:628

    Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogan. Theor Appl Genet 107:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B (1994) Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88: 994–1003

    Article  Google Scholar 

  • Singh S, Li W, Song QJ, Cregan P, Brown-Guedira GL, Gill BS (2000) Development and physical mapping of microsatellite markers in wheat. In: Proceedings National Fusarium Head Blight Forum. Cincinnati, KY, pp 52–53

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109: 1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2000) Construction of genomic library enriched with microsatellite sequences. Proceedings National Fusarium Head Blight Forum. Cincinnati, KY, p. 50–51

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Jourdier P, Nelson JC, Sorrels ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255

    Article  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed T, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Villareal RL, Sayre K, Bañuelos O, Mujeeb-Kazi A (2001) Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Sci. 41:274

    Article  Google Scholar 

  • Xiao JH, Li JM, Grandillo S, Ahn SN, Yuan LP, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. James Holland for providing help with genotypic correlations between traits, including the SAS program used to compute these. Thanks also to Cristina Andreescu for running this and the QTL × E SAS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.L. Brown-Guedira.

Additional information

Communicated by D. A. Hoisington

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narasimhamoorthy, B., Gill, B., Fritz, A. et al. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112, 787–796 (2006). https://doi.org/10.1007/s00122-005-0159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0159-0

Keywords

Navigation