Skip to main content
Log in

Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivumL.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We report here the second advanced backcross quantitative trait locus (AB-QTL) analysis carried out in winter wheat. Seven agronomic traits were studied in a BC2F1population derived from a cross between the German winter wheat variety Flair and the synthetic wheat line XX86 developed in Japan. We selected 111 BC2F1 lines and genotyped these with 197 microsatellite markers. Field data for seven agronomic traits were collected from corresponding BC2F3 families that were grown at up to six locations in Germany. QTL analyses for yield and yield components were performed using single-marker regression and interval mapping. A total of 57 putative QTLs derived from XX86 were detected, of which 24 (42.1%) were found to have a positive effect from the synthetic wheat XX86. These favourable QTLs were mainly associated with thousand-grain weight and grain weight per ear. Many QTLs for correlated traits were mapped in similar chromosomal regions. The AB-QTL data obtained in the present study are discussed and compared with results from previous QTL analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Berke TG, Baenziger PS, Morris R (1992) Chromosomal location of wheat quantitative trait loci affecting agronomic performance of seven traits, using reciprocal chromosome substitutions. Crop Sci 32:621–627

    Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Bramel-Cox PJ, Andrews DJ, Frey KJ (1986) Exotic germplasm for improving grain yield and growth rate in pearl millet. Crop Sci 26:687–690

    Google Scholar 

  • Brondani C, Rangel P, Brondani R, Ferreira M (2002) QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104:1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940

    Article  CAS  Google Scholar 

  • Cantrell RG, Joppa LR (1991) Genetic analysis of quantitative traits in wild emmer (Triticum turgidum L. var. dicoccoides). Crop Sci 31:645–649

    Google Scholar 

  • Chapman V, Miller TE, Riley R (1976) Equivalence of the A genome of bread wheat and that of Triticum urartu. Genet Res 27:69–76

    Google Scholar 

  • Cox TS, House LR, Frey KJ (1984) Potential of wild germplasm for increasing yield of grain sorghum. Euphytica 33:673–684

    Google Scholar 

  • Cox TS, Sears RG, Bequette RK (1995) Use of winter wheat × Triticum tauschii backcross populations for germplasm evaluation. Theor Appl Genet 90:571–577

    Google Scholar 

  • del Blanco IA, Rajaram S, Kronstad WE (2001) Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci 41:679–676

    Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crops. Longman, London

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorumcross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Gorham J, Hardy C, Wyn Jones RG, Joppa LR, Law CN (1987) Chromosomal location for a K:Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588

    CAS  Google Scholar 

  • Gororo NN, Eagles HA, Eastwood RF, Nicolas ME, Flood RG (2002) Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123:241–254

    Article  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414

    Article  CAS  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003a) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Huang XQ, Wang LX, Xu MX, Röder MS (2003b) Microsatellite mapping of the wheat powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 106:858–865

    CAS  PubMed  Google Scholar 

  • Hyne V, Kearsey MJ, Martinez O, Gang W, Snape JW (1994) A partial genome assay for quantitative trait loci in wheat (Triticum aestivum) using different analytical techniques. Theor Appl Genet 89:735–741

    CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in hexaploid wheat: Lr32, a third gene derived from Triticum tauschii. Crop Sci 27:204–206

    Google Scholar 

  • Kihara H (1944) Die Entdeckung des DD Analysators beim Weizen. Agric Hortic 19:889–890

    Google Scholar 

  • Law CN (1966) The locations of genetic factors affecting a quantitative character in wheat. Genetics 53:487–498

    Google Scholar 

  • Law CN (1967) The locations of genetic factors controlling a number of quantitative characters in wheat. Genetics 56:445–461

    Google Scholar 

  • Law CN, Snape JW, Worland AJ (1978) The genetic relationship between height and yield in wheat. Heredity 40:133–151

    Google Scholar 

  • Lawrence PK, Frey KJ (1975) Backcross variability for grain yield in oat species crosses (Avena sativa L. × A. sterilis L.). Euphytica 24:77–85

    Google Scholar 

  • Limin AE, Fowler DB (1993) Inheritance of cold hardiness in Triticum aestivum × synthetic hexaploid wheat crosses. Plant Breed 110:103–108

    Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156

    Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Resistance to stripe rust in Triticum turgidum, T. tauschii, and their synthetic hexaploids. Euphytica 82:117–124

    Google Scholar 

  • Moncada P, Martínez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogonBC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52

    Article  CAS  Google Scholar 

  • Nelson J (1997)qgene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Patterson AH, Tanksley SD Sorrells ME (1991) DNA markers in plant improvement. Adv Agron 46:39–90

    Google Scholar 

  • Peng JH, Ronin Y, Fahima T, Röder MS, Li YC, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  CAS  PubMed  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999)Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    CAS  Google Scholar 

  • Snape JW, Law CN, Parker BB, Worland AJ (1985) Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor Appl Genet 71:518–526

    Google Scholar 

  • Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:112–149

    Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed T, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Xiao JH, Li JM, Grandillo S, Ahn SN, Yuan LP, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 97:37–44

    Article  CAS  Google Scholar 

  • Zohary D, Harlan JR, Vardi A (1969) The wild diploid progenitors of wheat and their breeding value. Euphytica 18:58–65

    Google Scholar 

Download references

Acknowledgements

We would like to thank E. Ebmeyer at Lochow-Petkus GmbH, H. Cöster at Monsanto Agrar Deutschland GmbH, T. Hammann at Saatzucht Hadmersleben GmbH and R. Schachschneider at Nordsaat Saatzucht GmbH for the field experiments and evaluations described in this study; J. Schondelmaier at Saaten-Union Resistenzlabor GmbH for the coordination of this project; and A. Heber for excellent technical assistance. This research was supported by a grant from Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF). [Das Forschungsvorhaben (AiF-Nr. 12572 BR) wurde aus Haushaltsmitteln des Bundesministeriums für Wirtschaft und Arbeit (BMWA) über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V. (AiF) gefördert.]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Huang.

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X.Q., Kempf, H., Ganal, M.W. et al. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivumL.). Theor Appl Genet 109, 933–943 (2004). https://doi.org/10.1007/s00122-004-1708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1708-7

Keywords

Navigation