Skip to main content
Log in

QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A set of 142 winter wheat recombinant inbred lines (RILs) deriving from the cross Heshangmai × Yu8679 were tried in four ecological environments during the seasons 2006 and 2007. Nine agronomic traits comprising mean grain filling rate (GFRmean), maximum grain filling rate (GFRmax), grain filling duration (GFD), grain number per ear (GNE), grain weight per ear (GWE), flowering time (FT), maturation time (MT), plant height (PHT) and thousand grain weight (TGW) were evaluated in Beijing (2006 and 2007), Chengdu (2007) and Hefei (2007). A genetic map comprising 173 SSR markers and two EST markers was generated. Based on the genetic map and phenotypic data, quantitative trait loci (QTL) were mapped for these agronomic traits. A total of 99 putative QTLs were identified for the nine traits over four environments except GFD, PHT and MT, measured in two environments (BJ07 and CD07), respectively. Of the QTL detected, 17 for GFRmean, 16 for GFRmax, 21 for TGW and 10 for GWE involving the chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 6D and 7D were identified. Moreover, 13 genomic regions showing pleiotropic effects were detected in chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 4B, 4D, 5B, 6D and 7D; these QTL revealing pleiotropic effects may be informative for a better understanding of the genetic basis of grain filling rate and other yield-related traits, and represent potential targets for multi-trait marker aided selection in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CIM:

Composite interval mapping

IMTI:

International triticeae mapping initiative

MAS:

Marker aided selection

GFRmean :

Mean grain filling rate

GFRmax :

Maximum grain filling rate

GFD:

Grain filling duration

GNE:

Grain numbers per ear

GWE:

Grain weight per ear

FT:

Flowering time

MT:

Maturation time

PHT:

Plant height

TGW:

Thousand grain weight

QTL:

Quantitative trait loci

RILs:

Recombinant inbred lines

SSR:

Simple sequence repeat

EST:

Expressed sequence tag

Y8679:

Yu8679

HSM:

Heshangmai

BJ:

Beijing

CD:

Chengdu

HF:

Hefei

References

  • Bassam BJ, Caetano AG, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Bruckner PL, Frohberg RC (1987) Rate and duration of grain fill in spring wheat. Crop Sci 27:451–455

    Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    CAS  Google Scholar 

  • Cross HZ (1975) Diallel analysis of duration and rate of grain filling of seven inbred lines of corn. Crop Sci 15:532–535

    Google Scholar 

  • Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106:649–658

    PubMed  CAS  Google Scholar 

  • Darroch BA, Backer RJ (1990) Grain filling in three spring wheat genotypes: statistical analysiss. Crop Sci 30:525–529

    Google Scholar 

  • Egli DE, Ramseur EL, Yu ZW, Sullivan CH (1989) Source-sink alterations affect the number of cells in soybean cotyledons. Crop Sci 29:732–735

    Google Scholar 

  • Gebeyehou G, Knott DR, Baker RJ (1982) Rate and duration of grain filling in durum wheat cultivars. Crop Sci 22:337–340

    Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder MS, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, DelaPena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Kellar B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum astivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advance backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  PubMed  CAS  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM, Johnson EL, Bechtel DB, Wilson JD, Anderson OD, DuPont FM (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    Article  CAS  Google Scholar 

  • Jenner CF, Rathjen AJ (1972) Limitations to the accumulation of starch in the developing wheat grain. Ann Bot 36:743–754

    Google Scholar 

  • Kirigwi FM, Ginkel MV, Guedira GB, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Knott DR, Gebeyehou G (1987) Relationship between the lengths of the vegetative and grain filling periods and the agronomic characters in three durum wheat crosses. Crop Sci 27:857–860

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li SS, Jia JZ, Wei XY, Zhang XC, Li LZ, Chen HM, Fan YD, Sun HY, Zhao XH, Lei TD, Xu YF, Jiang FS, Wang HG, Li LH (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178

    Article  CAS  Google Scholar 

  • Li XJ, Pan ZD (2005) A study on the grain filling characteristic of different weight wheat. Rev China Agri Sci Tech 7:26–30

    Google Scholar 

  • Manness NO (1989) High temperature limitation for enzymatic sugar conversion in wheat kernels. Wheat, Barley and Triticale Abstract 6, 422

    Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theor Appl Genet 112:688–689

    Article  PubMed  CAS  Google Scholar 

  • Mashiringwani NA, Schweppenhauser MA (1992) Phenotypic characters associated with yield adaptation of wheat to a range of temperature conditions. Field Crops Res 29:69–77

    Article  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    PubMed  CAS  Google Scholar 

  • Mo HD (1992) Agricultural experimentation, 2nd edn. Shanghai Sci. & Tech Press, Shanghai, pp 22–25

  • Mou B, Kronstad WE (1994) Duration and rate of grain filling in selected winter wheat populations: I. Inherit Crop Sci 34:833–837

    Google Scholar 

  • Nass HG, Reisser B (1975) Grain filling period and grain yield relationships in spring wheat. Can J Plant Sci 55:673–678

    Article  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Peng JH, Ronin Y, Fahima T, Röder MS, Li YC, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  PubMed  CAS  Google Scholar 

  • Pinthus MJ, Shalom YS (1978) Dry matter accumulation in the grains of wheat (Triticum aestivum L.) cultivars differing in grain weight. Ann Bot 42:469–471

    Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarch H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  PubMed  CAS  Google Scholar 

  • Van Sanford DA (1985) Variation in kernel growth characters among soft red winter wheats. Crop Sci 25:626–630

    Google Scholar 

  • Wang GL, Kang MS, Moreno O (1999) Genetic analyses of grain-filling rate and duration in maize. Field Crops Res 61:211–222

    Article  Google Scholar 

  • Wiegand CL, Cuellar JA (1981) Duration of grain filling and kernal weight as affected by temperature. Crop Sci 21:95–101

    Google Scholar 

  • Yang JC, Zhang JH (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003) Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res 81:69–81

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhao BH, Zhang WJ, Wang ZQ, Zhu QS, Yang JC (2005) Changes in activitis of the key enzymes related to starch synthesis in rice grains during grain filling and their relationships with the filling rate and cooking quality. Agri Sci China 4:26–33

    Google Scholar 

Download references

Acknowledgments

This study was supported by the research project 06-02-03B granted by Chinese Ministry of Agriculture. We would like to thank researchers Zhonghu He and Xianchun Xia (Chinese Academy of Agricultural Sciences) for providing the SSR markers. We are grateful to researcher Ling Wu (Sichuan Province Academy of Agricultural Sciences) and researcher Rui Wang (Anhui Province Academy of Agricultural Sciences) for field evaluations in Chengdu and Hefei, respectively. We thank Dr. Carola Wagner (Department of Plant Breeding, Justus-Liebig-University Giessen, Germany) for improving the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Xiao.

Additional information

Communicated by C. Hackett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R.X., Hai, L., Zhang, X.Y. et al. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118, 313–325 (2009). https://doi.org/10.1007/s00122-008-0901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0901-5

Keywords

Navigation