Skip to main content
Log in

QTL analysis of kernel shape and weight using recombinant inbred lines in wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Quantitative trait locus (QTL) analysis of kernel shape and weight in common wheat was conducted using a set of 131 recombinant inbred lines (RIL) derived from ‘Chuan 35050’ × ‘Shannong 483’. The RIL and their two parental genotypes were evaluated for kernel length (KL), kernel width (KW), thousand-kernel weight (TKW), and test weight (TW) in four different environments. Twenty QTL were located on 12 chromosomes, 1A, 1B, 1D, 2A, 2B, 3B, 4A, 4B, 5D, 6A, 6B, and 7B, with single QTL in different environments explaining 5.9–26.4% of the phenotypic variation. Six, three, four, and seven QTL were detected for KL, KW, TKW, and TW, respectively. The additive effects for 17 QTL were positive with Chuan 35050 increasing the QTL effects, whereas the remaining three QTL were negative with Shannong 483 increasing the effects. Eight QTL (40%) were detected in two or more environments. Two QTL clusters relating to KW, TKW, and TW were located on chromosomes 2A and 5D, and the co-located QTL on chromosome 6A involved a QTL for KW found in two environments and a QTL for TKW detected in four environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AACC 1995 Official methods of analysis, 9th edn. American Association of Cereal Chemists, St, Paul

    Google Scholar 

  • Aguirre A, Badiali O, Cantarero M, Leon A, Ribotta P, Rubiolo O (2002) Relationship of test weight and kernel properties to milling and baking quality in Argentine triticales. Cereal Res Commun 30:203–208

    Google Scholar 

  • Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA et al (2001) Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102:726–732. doi:10.1007/s001220051703

    Article  CAS  Google Scholar 

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984. doi:10.1007/s001220051158

    Article  CAS  Google Scholar 

  • Blair CP (1992) Factor regression for interpreting genotype environment interaction in bread wheat trial. Theor Appl Genet 83:1022–1026

    Google Scholar 

  • Bergman CJ, Gualberto DG, Campbell KG, Sorrells ME, Finney PL (2000) Kernel morphology variation in a population derived from a soft by hard wheat cross and associations with end-use quality traits. J Food Qual 23:391–407. doi:10.1111/j.1745-4557.2000.tb00566.x

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS et al (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936. doi:10.1007/s00122-002-0994-1

    Article  PubMed  Google Scholar 

  • Botwright TL, Condon AG, Rebetzke GJ, Richards RA (2002) Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res 53:1137–1145. doi:10.1071/AR02007

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping population wheat. Field Crops Res 101:172–179. doi:10.1016/j.fcr.2006.11.008

    Article  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M et al (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A wheat. Crop Sci 43:1493–1505

    CAS  Google Scholar 

  • Campbell KG, Bergmem CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G et al (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    CAS  Google Scholar 

  • Chastain TG, Ward KJ, Wysocki DJ (1995) Stand establishment responses of soft white winter wheat to seedbed residue and seed size. Crop Sci 35:213–218

    Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS et al (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395. doi:10.1046/j.1439-0523.2003.00896.x

    Article  CAS  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Genet 3:43–52

    Article  CAS  Google Scholar 

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413. doi:10.1007/s00122-003-1440-8

    Article  PubMed  CAS  Google Scholar 

  • Giura A, Saulescu NN (1996) Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89:77–80. doi:10.1007/BF00015722

    Article  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS et al (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766. doi:10.1007/s00122-006-0346-7

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943. doi:10.1007/s00122-004-1708-7

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121. doi:10.1007/s001220051587

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    Article  CAS  Google Scholar 

  • Li SS, Jia JZ, Wei XY, Zhang XC, Chen HM, Sun HY et al (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178. doi:10.1007/s11032-007-9080-3

    Article  CAS  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698. doi:10.1007/s00122-005-0172-3

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DJ, Lukow O (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL 4452 × AC ‘Domain’. Genome 48:870–883

    PubMed  CAS  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown GL (2006) Advanced backcross QTL analysis of a hard winter wheat synthetic wheat population. Theor Appl Genet 112:787–796. doi:10.1007/s00122-005-0159-0

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E et al (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494. doi:10.1073/pnas.252763199

    Article  PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880. doi:10.1007/s00122-004-1902-7

    Article  PubMed  CAS  Google Scholar 

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    CAS  Google Scholar 

  • Varshney RK, Prasad M, Roy JK, Kumar N, Singh H, Dhaliwal HS et al (2000) Identification of eight chromosomes and one microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet 100:1290–1295. doi:10.1007/s001220051437

    Article  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536. doi:10.1093/bioinformatics/btm143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by “National Basic Research Program of China (973 Program)” (Grant No. 2006CB101700) and “National Key Technologies R & D Program” (Grant No. 2006BAD13B02)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Gang Wang or Si-Shen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, XY., Wu, K., Zhao, Y. et al. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165, 615–624 (2009). https://doi.org/10.1007/s10681-008-9794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9794-2

Keywords

Navigation