Skip to main content

SMART Plant Breeding from Pre-genomic to Post-genomic Era for Developing Climate-Resilient Cereals

  • Chapter
  • First Online:
Smart Plant Breeding for Field Crops in Post-genomics Era

Abstract

The world is facing unprecedented repercussions of climate change or global warming. Rising temperature makes glaciers melt, causing flooding and erosion, which undermines food production. Various technologies, including soil management, crop diversification, rainwater harvesting, farm machinery, livestock and fishery interventions, and weather-based agro advisories, assist in adapting the climate changes for crop production. Plant breeding has played a pivotal role in human history by revolutionizing agriculture to feed the ever-growing population. Recent advancements in omics platforms have enabled breeders to gain better insight into crop physiology and underlying genetic mechanisms. A better understanding of the structure, function, regulation, and interaction of genetic factors is possible due to the advent of high-throughput genome sequencing platforms, precise phenotyping, advanced computing, and data analysis platforms. Breeding for high yield with sustainable use of scarce resources in a diverse environment urgently demands the amalgamation of these throughput technologies. Wild species, wild relatives, and landraces are the storehouse of various desirable traits and cornerstones of breeding programs. Conventional breeding methods played a tremendous role in crop improvement, but it is challenging to achieve climate resiliency demand by depending on traditional methods alone. The present chapter discusses the classical breeding methods and advancements in genomics, genome sequencing, transgenics, genome editing, and related breeding methodologies such as marker-assisted selection and incorporation of phenomics, data analytics, and artificial intelligence for the rapid development of climate-resilient cereal crops. The chapter briefly presents the success achieved through holistic SMART-breeding approaches in cereal crops from the pre- to post-genomic period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Guenzi AC, Martin B, Chushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abobatta WF (2019) Drought adaptive mechanisms of plants—a review. Adv Agric Environ Sci 2(1):62–65

    Google Scholar 

  • Abo-Elenin RA, Heakal MS, Gomaa AS, Moseman JG (1981) Studies on salt tolerance in barley and wheat. Source of tolerance in barley germplasm. Barley genetics IV. In: Proc. 4th Int. Barley Genet. Symp, Edinburgh, pp 402–409

    Google Scholar 

  • Adhikari S, Joshi A, Kumar A, Singh NK (2021a) Diversification of maize (Zea mays L.) through teosinte (Zea mays subsp. parviglumis Iltis & Doebley) allelic. Genet Resour Crop Evol 68:2983–2995

    Article  CAS  Google Scholar 

  • Adhikari S, Joshi A, Kumar A, Singh NK, Jaiswal JP, Jeena AS (2021b) Revealing the genetic diversity of teosinte introgressed maize population by morphometric traits and microsatellite markers. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-021-00710-z

  • Adhikari S, Kumari J, Jacob SR, Prasad P, Gangwar OP, Lata C, Kumar S (2022) Landraces-potential treasure for sustainable wheat improvement. Genet Resour Crop Evol 69:499–523

    Article  Google Scholar 

  • Agarwal SK, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51(5):677–686

    Article  PubMed  Google Scholar 

  • Aghamolki MTK, Yusop MK, Oad FC, Zakikhani H, Jaafar HZ, Kharidah S et al (2014) Heat stress effects on yield parameters of selected rice cultivars at reproductive growth stages. J Food Agric Environ 12:741–746

    Google Scholar 

  • Aguilar-Rangel MR, Montes RA, González-Segovia E, Ross-Ibarra J, Simpson JK, Sawers RJ (2017) Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueño. PeerJ 5:e3737. https://doi.org/10.7717/peerj.3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35(1):81–91

    Article  CAS  Google Scholar 

  • Akbari G, Sanavy SA, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci 10(15):2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9:43–50

    Google Scholar 

  • Alamri SA, Barrett-Lennard EG, Teakle LN, Colmer TD (2013) Improvement of salt and water logging tolerance in wheat: comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents. Funct Plant Biol 40:1168–1178

    Article  CAS  PubMed  Google Scholar 

  • Ali AJ, Xu JL, Ismail AM, Fu BY, Vijaykumar CHM, Gao YM, Domingo J, Maghirang R, Yu SB, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li ZK (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crop Res 97(1):66–76

    Article  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali J, Xu J-L, Gao Y-M, Ma X-F, Meng L-J, Wang Y et al (2017) Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS One 12(3):e0172515

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Hayat K, Iqbal A, Xie L (2020) Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 10(9):1323

    Article  CAS  Google Scholar 

  • Al-Shareef NO, Tester M (2019) Plant salinity tolerance. In: eLS. Wiley, Chichester, pp 1–6

    Google Scholar 

  • Amara I, Capellades M, Ludevid MD, Pagès M, Goday A (2013) Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene. J Plant Physiol 170(9):864–873

    Article  CAS  PubMed  Google Scholar 

  • Ananda GKS, Myrans H, Norton SL, Gleadow R, Furtado A, Henry RJ (2020) Wild Sorghum as a promising resource for crop improvement. Front Plant Sci 11:1108. https://doi.org/10.3389/fpls.2020.01108

    Article  PubMed  PubMed Central  Google Scholar 

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Andjelkovic V, Kravic N, Babic V et al (2014) Estimation of drought tolerance among maize landraces from mini-core collection. Genetika 46:775–788

    Article  Google Scholar 

  • Andrews DJ, Kumar AK (1996) Use of the WestAfrican pearl millet landrace Iniadi in cultivar development. Plant Genet Resour Newslett 105:15–22

    Google Scholar 

  • Ansari WA, Chandanshive SU, Bhatt V, Nadaf AB, Vats S, Katara JL, Sonah H, Deshmukh R (2020) Genome editing in cereals: approaches, applications and challenges. Int J Mol Sci 21(11):4040. https://doi.org/10.3390/ijms21114040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad MS, Farooq M, Asch F, Krishna JSV, Prasad PVV, Siddique KHM (2017) Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol Biochem 115:57–72

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MHPJC, Harris PJ (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Athar HR, Ashraf M (2009) Strategies for crop improvement against salinity and drought stress: an overview. In: Ashraf M, Ozturk M, Athar H (eds) Salinity and water stress. Tasks for vegetation sciences, vol 44. Springer, Dordrecht

    Google Scholar 

  • Athar HUR, Zafar ZU, Ashraf M (2015) Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agron Crop Sci 201(6):428–442

    Article  CAS  Google Scholar 

  • Awan MA (1991) Use of induced mutations for crop improvement in Pakistan. In: Plant mutation breeding for crop improvement, vol 1. IAEA, Vienna, pp 67–72

    Google Scholar 

  • Awika JM (2011) Major cereal grains production and use around the world. In: Advances in cereal science: implications to food processing and health promotion, pp 1–13. https://doi.org/10.1021/bk-2011-1089.ch001

    Chapter  Google Scholar 

  • Ayadi S, Jallouli S, Landi S, Capasso G, Chamekh Z, Cardi M, Paradisone V, Lentini M, Karmous C, Trifa Y et al (2020) Nitrogen assimilation under different nitrate nutrition in Tunisian durum wheat landraces and improved genotypes. Plant Biosyst Int J Deal All Asp Plant Biol 154:924–934

    Google Scholar 

  • Bahuguna RN, Jha J, Pal M, Shah D, Lawas LMF, Khetarpal S, Jagadish SVK (2015) Physiological and biochemical characterization of NERICA-L-44: a novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiol Plant 154:543–559

    Article  CAS  PubMed  Google Scholar 

  • Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci 16(7):15811–15851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balota M, Sarkar S, Cazenave A, Burow M, Bennett R, Chamberlin K, Wang N, White M, Payton P, Mahan J (2021) Vegetation indices enable indirect phenotyping of peanut physiologic and agronomic characteristics. Paper presented at the American Peanut Research and Education Society Annual Meeting 2021, Virtual

    Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38

    PubMed  Google Scholar 

  • Basu S, Kumar G, Kumari N, Kumari S, Shekhar S, Kumar S, Rajwanshi R (2020) Reactive oxygen species and reactive nitrogen species induce lysigenous aerenchyma formation through programmed cell death in rice roots under submergence. Environ Exp Bot 177:104118

    Article  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bendig J, Bolten A, Bareth G (2013) UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Unmanned aerial vehicles (UAVs) for multi-temporal crop surface modelling. Photogramm Fernerkun Geoinform (6):551–562

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bhandari A, Bartholomé J, Cao-Hamadoun TV, Kumari N, Frouin J, Kumar A, Ahmadi N (2019) Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice. PLoS One 14(5):e0208871

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisht A, Kumar A, Gautam RD, Arya RK (2019) Breeding of pearl millet (Pennisetum glaucum (L.)). In: Advances in plant breeding strategies: cereals. Springer, Cham, pp 165–221

    Chapter  Google Scholar 

  • Biswas SK, Devi D, Chakraborty MA (2018) Hybrid case based reasoning model for classification in internet of things (iot) environment. J Organ End User Comput 30(4):104–122

    Article  Google Scholar 

  • Bonilla P, Mackell D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philippine Agricultural Scientist (Philippines)

    Google Scholar 

  • Brar D (2005) Broadening the genepool and exploiting heterosis in cultivated rice. In: Rice is life: scientific perspectives for the 21st century. Toriyama K, Heong KL, Hardy B (eds) Proceedings of the World Rice Research Conference November, 2004. Tokyo and Tsukuba, Japan. pp 4–7

    Google Scholar 

  • Britz SJ, Prasad PVV, Moreau RA, Allen LH, Kremer DF, Boote KJ (2007) Influence of growth temperature on the amounts of tocopherols, tocotrienols, and γ-oryzanol in brown rice. J Agric Food Chem 55(18):7559–7565

    Article  CAS  PubMed  Google Scholar 

  • Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8(12):e1002822. https://doi.org/10.1371/journal.pcbi.1002822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrt C, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1; 5-like cation transporter linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpici EB, Celik N, Bayram G (2009) Effects of salt stress on germination of some maize (Zea mays L.) cultivars. Afr J Biotechnol 8:4918–4922

    CAS  Google Scholar 

  • Carvalho MD (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3(3):156–165

    Article  Google Scholar 

  • Chandra AK, Kumar A, Bharati A, Joshi R, Agrawal A, Kumar S (2020) Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops. 3 Biotech 2(10):1–15

    Google Scholar 

  • Chen Y, Ma J, Zhang X, Yang Y, Zhou D et al (2017) A novel non-specific lipid transfer protein gene from sugarcane (NsLTPs), obviously responded to abiotic stresses and signaling molecules of SA and MeJA. Sugar Tech 19:17–25

    Article  CAS  Google Scholar 

  • Choudhary M, Wani SH, Kumar P et al (2019) QTLian breeding for climate resilience in cereals: progress and prospects. Funct Integr Genomics 19:685–701

    Article  CAS  PubMed  Google Scholar 

  • Condorelli GE, Maccaferri M, Newcomb M, Andrade-Sanchez P, White JW, French AN, Sciara G, Ward R, Tuberosa R (2018) Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front Plant Sci 9:893. https://doi.org/10.3389/fpls.2018.00893

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42(3):998–1018

    Article  CAS  PubMed  Google Scholar 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan MF, Blomstedt CK, Norton SL, Henry RJ, Møller BL, Gleadow R (2020) Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum. Environ Exp Bot 169:103884. https://doi.org/10.1016/j.envexpbot.2019.103884

    Article  CAS  Google Scholar 

  • Cseri A, Cserháti M, von Korff M, Bettina Nagy B, Horváth GV, Palágyi A, Pauk J, Dudits D, Törjék O (2011) Allele mining and haplotype discovery in barley candidate genes for drought tolerance. Euphytica 181:341–356

    Article  Google Scholar 

  • Dalal M (2016) Genetic transformation for functional genomics of Sorghum. In: The Sorghum genome. Springer, Cham, pp 227–242

    Chapter  Google Scholar 

  • Dana I, Chatterjee S, Kundu C (2013) Twenty years of achievements of the EIRLSBN at the Rice Research Station, Chinsurah. In: Collard BCY, Ismail IS, Hardy B (eds) IRRI. EIRLSBN Twenty years of achievements in rice breeding. pp 53–64

    Google Scholar 

  • Dantas BF, DeSa RL, Aragao CA (2007) Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Rev Bras Sementes 29:106–110

    Article  Google Scholar 

  • Dar MH, Bano DA, Waza SA, Zaidi NW, Majid A, Shikari AB, Ahangar MA, Hossain M, Kumar A, Singh US (2021) Abiotic stress tolerance-progress and pathways of sustainable rice production. Sustainability 13(4):2078

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • de Abreu Neto JB, Hurtado-Perez MC, Wimmer MA, Frei M (2017) Genetic factors underlying boron toxicity tolerance in rice: genome-wide association study and transcriptomic analysis. J Exp Bot 68(3):687–700

    PubMed  Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66(10):2827–2837

    Article  PubMed  Google Scholar 

  • Demir N, Sönmez NK, Akar T, Ünal S (2018) Automated measurement of plant height of wheat genotypes using a DSM derived from UAV imagery. Multidisciplinary Digital Publishing Institute Proceedings 2(7):350

    Google Scholar 

  • Deshpande S, Rakshit S, Manasa KG, Pandey S, Gupta R (2016) Genomic approaches for abiotic stress tolerance in Sorghum. In: The Sorghum genome. Springer, Cham, pp 169–187

    Chapter  Google Scholar 

  • Devarumath RM, Mirajkar SJ, Thorat AS, Farsangi FJ, Suprasanna P (2019) Genomic landscapes of abiotic stress responses in sugarcane. In: Genomics assisted breeding of crops for abiotic stress tolerance, vol II. Springer, Cham, pp 225–240

    Chapter  Google Scholar 

  • Dixit S, Singh UM, Singh AK et al (2020) Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice 13:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudely JW (1984) A method of identifying lines for use in improving parents of a single cross. Crop Sci 24:355–357

    Article  Google Scholar 

  • Duke ER, Doehlert DC (1996) Effects of heat stress on enzyme activities and transcript levels in developing maize kernels grown in culture. Environ Exp Bot 36(2):199–208

    Article  CAS  Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Edmeades GO, Bolanos J, Lafitte HR (1992) Progress in breeding for drought tolerance in maize proceedings of the Forty-Seventh Annual Corn and Sorghum Industry Research Conference, pp 93–111

    Google Scholar 

  • El-Hashash EF, El-Absy KM (2019) Barley (Hordeum vulgare L.) breeding. In: Advances in plant breeding strategies: cereals. Springer, Cham, pp 1–45

    Google Scholar 

  • Estrada-Campuzano G, Miralles DJ, Slafer GA (2008) Genotypic variability and response to water stress of pre-and post-anthesis phases in triticale. Eur J Agron 28(3):171–177

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A et al (2017a) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 29:8

    Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017b) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Essex, pp 1529–1536

    Google Scholar 

  • Fan Y, Shabala S, Ma Y, Xu R, Zhou M (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Zhou G, Shabala S, Chen Z-H, Cai S, Li C, Zhou M (2016) Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.). Front Plant Sci 7:946

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2017) The future of food and agriculture: trends and challenges. FAO, Rome. http://www.fao.org/3/a-i6583e.pdf

    Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501–516

    Article  Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30(6):491–507

    Article  Google Scholar 

  • Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhang JW (2014) Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agron Crop Sci 200:143–155

    Article  CAS  Google Scholar 

  • Fiedler K, Bekele WA, Matschegewski C, Snowdon R, Wieckhorst S, Zacharias A et al (2016) Cold tolerance during juvenile development in sorghum: a comparative analysis by genome wide association and linkage mapping. Plant Breed 135(5):598–606

    Article  CAS  Google Scholar 

  • Fisher JA, Scott BJ (1987) In: Searle PGE, Davey BG (eds) Priorities in plant soil relations research for plant production. University of Sydney, Sydney, pp 135–137

    Google Scholar 

  • Freeman KW, Girma K, Arnall DB, Mullen RW, Martin KL, Teal RK, Raun WR (2007) By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron J 99(2):530–536

    Article  CAS  Google Scholar 

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Feng B, Zhang C, Yang Y, Yang X, Chen T, Zhao X, Zhang X, Jin Q, Tao L (2016) Heat stress is more damaging to superior spikelets than inferiors of rice (Oryza sativa L.) due to their different organ temperatures. Front Plant Sci 7:1637. https://doi.org/10.3389/fpls.2016.01637

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147:15–27

    Article  CAS  PubMed  Google Scholar 

  • Gandhi D (2007) UAS scientist develops first drought tolerant rice. The Hindu. www.thehindu.com/2007/11/17/stories/2007111752560500.htm

  • Gautam T, Saripalli G, Kumar A, Gahlaut V, Gadekar DA, Oak M, Sharma PK, Balyan HS, Gupta PK (2021) Introgression of a drought insensitive grain yield QTL for improvement of four Indian bread wheat cultivars using marker assisted breeding without background selection. J Plant Biochem Biotechnol 30(1):172–183

    Article  CAS  Google Scholar 

  • Gazal A, Dar ZA, Wani SH, Lone AA, Shikari AB, Ali G, Abidi I (2016) Molecular breeding for enhancing resilience against biotic and abiotic stress in major cereals. SABRAO J Breed Genet 48(1):1–32

    Google Scholar 

  • Gazal A, Dar ZA, Lone AA (2018) Molecular breeding for abiotic stresses in maize (Zea mays L.). In: El-Esawi M (ed) Maize germplasm—characterization and genetic approaches for crop improvement. IntechOpen. https://doi.org/10.5772/intechopen.71081

    Chapter  Google Scholar 

  • Gehan MA, Kellogg EA (2017) High-throughput phenotyping. Am J Bot 104(4):505–508

    Article  PubMed  Google Scholar 

  • Gelli M, Mitchell SE, Liu K, Clemente TE, Weeks DP et al (2016) Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum. BMC Plant Biol 16:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosal S, Zheng B, Chapman SC, Potgieter AB, Jordan DR, Wang X, Singh AK, Singh A, Hirafuji M, Ninomiya S, Ganapathysubramanian B (2019) A weakly supervised deep learning framework for sorghum head detection and counting. Plant Phenomics 2019:1525874. https://doi.org/10.34133/2019/1525874

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Giri A, Heckathorn S, Mishra S, Krause C (2017) Heat stress decreases levels of nutrient-uptake and-assimilation proteins in tomato roots. Plants 6(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobu R, Shiv A, Kumar AC, Basavaraj PS, Harish D et al (2020) Accelerated crop breeding towards development of climate resilient varieties. In: Srinivasarao C, Srinivas T, Rao RVS, Rao NS, Vinayagam SS, Krishnan P (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, Telangana, pp 49–69

    Google Scholar 

  • Gomes-Filho E, Lima CRFM, Costa JH, da Silva ACM, da Guia Silva Lima M, de Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27(1):147–157. https://doi.org/10.1007/s00299-007-0433-5

    Article  CAS  PubMed  Google Scholar 

  • GonzaAlez JJS, Corral JAR, Garcia GM et al (2018) Eco-geography of teosinte. PLoS One 13(2):e0192676

    Article  Google Scholar 

  • Gopalakrishnan S, Sharma RK, Anand Rajkumar K, Joseph M, Singh VP, Singh AK, Bhat KV, Singh NK, Mohapatra T (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed 127(2):131–139

    Article  CAS  Google Scholar 

  • Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294

    Article  Google Scholar 

  • Gupta HS, Agrawal PK, Mahajan V, Bisht GS, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant MC, Mani VP (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237

    Google Scholar 

  • Gustin JL, Zanis MJ, Salt DE (2011) Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evol Biol 11:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S (2017) Multilevel regulation of abiotic stress responses in plants. Front Plant Sci 8:1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Habora MEE, Eltayeb AE, Tsujimoto H, Tanaka K (2012) Identification of osmotic stress-responsive genes from Leymus mollis, a wild relative of wheat (Triticum aestivum L.). Breed Sci 62:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yamakawa H (2012) Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol J 10(9):1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Qiu L, Munns R, Chen ZH, Zhang GA (2018) Sodium Transporter HvHKT1;1 Confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol 59:1976–1989

    Article  CAS  PubMed  Google Scholar 

  • Hao Z, Li X, Xie C (2008) Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann Appl Biol 153:73–83

    Article  Google Scholar 

  • Harsant J, Pavlovic L, Chiu G, Sultmanis S, Sage TL (2013) High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J Exp Bot 64(10):2971–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartati RS, Suhesti S, Wulandari S, Ardana IK, Yunita R (2021) In-vitro selection of sugarcane (Saccharum officinarum L.) putative mutant for drought stress. IOP Conf Ser Earth Environ Sci 653(1):012135

    Article  Google Scholar 

  • Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, Ashkani S, Malek MA, Latif MA (2015) Marker assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29:237–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan MM, Chopin JP, Laga H, Miklavcic SJ (2018) Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 14(1):1–3

    Article  Google Scholar 

  • Hasanuzzaman M, Fujita M, Islam MN, Ahamed KU, Nahar K (2009) Performance of four irrigated rice varieties under different levels of salinity stress. Int J Integr Biol 6:85–90

    Google Scholar 

  • Hernández VAG, Cruz EL, Onofre LEM, Varela AS, Espinosa MAG, García FZ (2021) Maize (Zea Mays L.) landraces classified by drought stress tolerance at the seedling stage. Emir J Food Agric 33(1):29–36

    Article  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SC et al (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Holman FH, Riche AB, Michalski A, Castle M, Wooster MJ, Hawkesford MJ (2016) High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens 8(12):1031

    Article  Google Scholar 

  • Hospital F (2005) Selection in backcross programmes. Philos Trans R Soc B Biol Sci 360:1503–1511

    Article  CAS  Google Scholar 

  • Hossain F et al (2016) Maize. In: Singh M, Kumar S (eds) Broadening the genetic base of grain cereals. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3613-9_4

    Chapter  Google Scholar 

  • Houshmand S, Arzani A, Mirmohammadi-Maibody SAM (2014) Effects of salinity and drought stress on grain quality of durum wheat. Commun Soil Sci Plant Anal 45:297–308

    Article  CAS  Google Scholar 

  • Hu YF, Zhou G, Na XF, Yang L, Nan WB, Liu X, Zhang YQ, Li JL, Bi YR (2013) Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J Plant Physiol 170:965–975

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Zheng Q, Luo Q et al (2020a) Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. pp 1–34

    Google Scholar 

  • Hu S, Ding Y, Zhu C (2020b) Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci 11:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang G, Du X, Zhang H, Xu Z, Wang J, Chen G, Wang B, Li X, Chen X, Fu J (2021) QTL analysis across multiple environments reveals promising chromosome regions associated with yield-related traits in maize under drought conditions. Crop J 9(4):759–766

    Article  Google Scholar 

  • Hu W, Lu Z, Gu H, Ye X, Li X, Cong R et al (2022) Potassium availability influences the mesophyll structure to coordinate the conductance of CO2 and H2O during leaf expansion. Plant Cell Environ 45:2987–3000

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Rachmilevitch S, Xu J (2012) Root carbon and protein metabolism associated with heat tolerance. J Exp Bot 63(9):3455–3465

    Article  CAS  PubMed  Google Scholar 

  • Inbaraj MP (2021) Plant-microbe interactions in alleviating abiotic stress—a mini review. Front Agron 28

    Google Scholar 

  • Inghelandt DV, Frey FP, Ries D, Stich B (2019) QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Sci Rep 9:14418. https://doi.org/10.1038/s41598-019-50853-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innes P, Blackwell RD, Quarrie SA (1984) Some effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat. J Agric Sci 102(2):341–351

    Article  CAS  Google Scholar 

  • Jabbari M, Fakheri BA, Aghnoum R, Mahdi Nezhad N, Ataei R (2018) GWAS analysis in spring barley (Hordeum vulgare L.) for morphological traits exposed to drought. PLoS One 13(9):e0204952

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain M, Gadre RP (2004) Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening. J Plant Physiol 161(3):251–255

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Singh GP, Singh PK, Ramya P, Krishna H, Ramya KT, Todkar L, Amasiddha B, Prashant KC, Vijay P (2014) Molecular approaches for wheat improvement under drought and heat stress. Indian J Genet 74(4):578–583

    Article  Google Scholar 

  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi A, Javanmard H (2018) Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng J 9:2093–2099

    Article  Google Scholar 

  • Jayaraman PP, Yavari A, Georgakopoulos D, Morshed A, Zaslavsky A (2016) Internet of things platform for smart farming: experiences and lessons learnt. Sensors 16(11):1884

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeyasri R, Muthuramalingam P, Satish L, Pandian SK, Chen J-T, Ahmar S, Wang X, Mora-Poblete F, Ramesh M (2021) An overview of abiotic stress in cereal crops: negative impacts, regulation, biotechnology and integrated omics. Plants 10(7):1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Zhang Z, Xi Y, Yang Z, Xiao Z, Guan S, Qu J, Wang P, Zhao R (2021) Identification and functional verification of cold tolerance genes in spring maize seedlings based on a genome-wide association study and quantitative trait locus mapping. Front Plant Sci 12:776972–776972

    Article  PubMed  PubMed Central  Google Scholar 

  • Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E (2021) The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci 22(9):4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juliana P, Poland J, Huerta-Espino J et al (2019) Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat Genet 51:1530–1539

    Article  CAS  PubMed  Google Scholar 

  • Jumrani K, Bhatia VS (2019) Identification of drought tolerant genotypes using physiological traits in soybean. Physiol Mol Biol Plants 25(3):697–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kage H, Kochler M, Stützel H (2004) Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron 20:379–394

    Article  Google Scholar 

  • Kalaji HM, Rastogi A, Živčák M et al (2018) Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56:953–961

    Article  CAS  Google Scholar 

  • Kalladan R, Worch S, Rolletschek H, Harshavardhan V, Kuntze L, Seiler C, Sreenivasulu N, Röder M (2013) Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed 32:71–90

    Article  Google Scholar 

  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The Impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl Sci 10(16):1–19

    Article  Google Scholar 

  • Kar S, Purbey VK, Suradhaniwar S, Korbu LB, Kholová J, Durbha SS, Adinarayana J, Vadez V (2021) An ensemble machine learning approach for determination of the optimum sampling time for evapotranspiration assessment from high-throughput phenotyping data. Comput Electron Agric 182:105992

    Article  Google Scholar 

  • Karthika G, Govintharaj P (2022) Breeding climate-resilience crops for future agriculture. In: Climate change and crop stress. Academic, pp 1–32

    Google Scholar 

  • Kaur N, Sharma S, Hasanuzzaman M, Pati PK (2022) Genome editing: a promising approach for achieving abiotic stress tolerance in plants. Int J Genomics 2022:5547231. https://doi.org/10.1155/2022/5547231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Abdullah Z (2003) Salinity–sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions. Environ Exp Bot 49(2):145–157

    Article  CAS  Google Scholar 

  • Khan MA, Rizvi Y (1994) Effect of salinity, temperature and growth regulators on the germination and early seedling growth of Atriplex griffithii var. Stocksii. Can J Bot 72:475–479

    Article  Google Scholar 

  • Khan MA, Weber DJ (2008) Ecophysiology of high salinity tolerant plants (tasks for vegetation science), 1st edn. Springer, Amsterdam

    Google Scholar 

  • Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front Plant Sci 7:1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharub AS, Singh J, Lal C, Kumar V (2017) Abiotic stress tolerance in barley. In: Abiotic stress management for resilient agriculture. Springer, Singapore, pp 363–374

    Chapter  Google Scholar 

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304

    CAS  Google Scholar 

  • Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish SV, Kusolwa P, Rathinasabapathi B (2018) Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front Plant Sci 9:1578

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Jeon YS (2009) Critical seed moisture content for germination in crop species. J Korean Soc Int Agric 21(3):159–164

    CAS  Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim KS, Kim Y, Chung YS (2021) A short review: comparisons of high-throughput phenotyping methods for detecting drought tolerance. Sci Agric 78(4). https://doi.org/10.1590/1678-992X-2019-030

  • Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, AlvarezNakase AM, Takabe T, Takabe T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ 23:107–114

    Article  CAS  Google Scholar 

  • Krishnan P, Ramakrishnan B, Reddy KR, Reddy VR (2011) High-temperature effects on rice growth, yield, and grain quality. Adv Agron 111:87–206

    Article  CAS  Google Scholar 

  • Krishnan SG, Singh AK, Rathour R, Nagarajan M, Bhowmick PK, Ellur RK, Vinod KK, Haritha B, Singh UD, Prakash G, Seth R (2019) Riec Pusa Samba 1850

    Google Scholar 

  • Krugman T, Peleg Z, Quansah L, Chagué V, Korol AB, Nevo E, Saranga Y, Fait A, Chalhoub B, Fahima T (2011) Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct Integr Genomics 11:565–583

    Article  CAS  PubMed  Google Scholar 

  • Kulwal PL (2016) Association mapping and genomic selection—where does sorghum stand? In: The sorghum genome. Springer, Cham, pp 137–148

    Chapter  Google Scholar 

  • Kumar MS, Dahuja A, Rai RD, Walia S, Tyagi A (2014a) Role of γ-oryzanol in drought-tolerant and susceptible cultivars of rice (Oryza sativa L.). Indian J Biochem Biophys 51(1):75–80

    CAS  PubMed  Google Scholar 

  • Kumar T, Khan MR, Abbas Z, Ali GM (2014b) Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol 56:199–209

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Hasan M, Arora A et al (2015a) Sodium chloride-induced spatial and temporal manifestation in membrane stability index and protein profiles of contrasting wheat (Triticum aestivum L.) genotypes under salt stress. Indian J Plant Physiol 20:271–275. https://doi.org/10.1007/s40502-015-0157-4

    Article  CAS  Google Scholar 

  • Kumar V, Singh A, Mithra SA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP (2015b) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22(2):133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh NK, Jeena AS, Jaiswal JP, Verma SS (2020a) Evaluation of teosinte derived maize lines for drought tolerance. Indian J Plant Genet Resour 33(1):60–67

    Article  Google Scholar 

  • Kumar A, Verma RP, Singh A, Sharma HK, Devi G (2020b) Barley landraces: ecological heritage for edaphic stress adaptations and sustainable production. Environ Sustain Indic 6:100035

    Article  Google Scholar 

  • Kushwaha AK, Dinkar V, Thribhuvan R, Mohan N, Malpuri S, Sundaram RM (2021) Emerging tools and techniques in crop improvement for higher productivity and multiple stress tolerance. In: Srinivasarao C, Balakrishnan M, Krishnan P, Kumar VVS (eds) Agricultural research, technology and policy: innovations and advances. ICAR-NAARM, Hyderabad, Telangana, pp 41–78

    Google Scholar 

  • Ladoni M, Bahrami HA, Alavipanah SK, Norouzi AA (2010) Estimating soil organic carbon from soil reflectance: a review. Precis Agric 11(1):82–99

    Article  Google Scholar 

  • Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N (2017) Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One 12(2):e0171254. https://doi.org/10.1371/journal.pone.0171254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafitte HR, Li ZK, Vijayakumar CHM, Gao YM, Shi Y, Xu JL, Fu BY, Yu SB, Ali AJ, Domingo J, Maghirang R, Torres R, Mackill D (2006) Improvement of rice drought tolerance through backcross breeding: evaluation of donors and selection in drought nurseries. Field Crop Res 97:77–86

    Article  Google Scholar 

  • Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Brief Funct Genomics 4(1):343–354

    Article  CAS  Google Scholar 

  • Laskowski W, Górska-Warsewicz H, Rejman K, Czeczotko M, Zwolińska J (2019) How important are cereals and cereal products in the average polish diet? Nutrients 11(3):679. https://doi.org/10.3390/nu11030679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Seong J, Han Y, Lee WH (2020) Evaluation of applicability of various color space techniques of UAV images for evaluating cool roof performance. Energies 13(16):4213

    Article  Google Scholar 

  • Lei L, Zhu X, Wang S, Zhu M, Carver BF, Yan L (2013) TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLoS One 8(9):e73330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leisner CP (2020) Review: climate change impacts on food security—focus on perennial cropping systems and nutritional value. Plant Sci 293:110412

    Article  CAS  PubMed  Google Scholar 

  • Li WT, Liu C, Liu YX et al (2013a) Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica 189:31–49

    Article  CAS  Google Scholar 

  • Li YF, Wu Y, Hernandez-Espinosa N, Peña RJ (2013b) Heat and drought stress on durum wheat: responses of genotypes, yield and quality parameters. J Cereal Sci 57(3):398–404

    Article  Google Scholar 

  • Li J, Chen J, Jin J, Wang S, Du B (2019) Effects of irrigation water salinity on maize (Zea mays L.) emergence, growth, yield, quality, and soil salt. Water 11:2095

    Article  CAS  Google Scholar 

  • Lin W, Wu X, Linag K, Guo Y, He H, Chen F, Liang Y (2002) Effect of enhanced UV-B radiation on polyamine metabolism and endogenous hormone contents in rice (Oryza sativa L.). J Appl Ecol 13(7):807–813

    CAS  Google Scholar 

  • Liu K et al (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Banik M, Yu K, Park SJ, Poysa V, Guan Y (2007) Marker-assisted selection (MAS) in major cereal and legume crop breeding: current progress and future directions. Int J Plant Breed 1(2):75–78

    Google Scholar 

  • Liu L, Xia W, Li H, Zeng H, Wei B, Han S, Yin C (2018) Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Front Plant Sci 9:275

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Ma G, Bussmann RW, Bai K, Li J, Cao W, Long C (2019a) Determining factors for the diversity of hulless barley agroecosystem in the himalaya region—a case study from Northwest Yunnan, China. Global Ecol Conserv 18:e00600

    Article  Google Scholar 

  • Liu C, Pinto F, Cossani CM et al (2019b) Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat: heritability estimates and marker-trait associations. Front Agric Sci Eng 6:296–308

    Article  Google Scholar 

  • Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2:186–189

    Article  Google Scholar 

  • Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67(4):1161–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhavi KR, Rambabu R, Kumar AV, Vijay Kumar S, Aruna J, Ramesh S et al (2016) Marker assisted introgression of blast (Pi-2 and Pi-54) genes in to the genetic background of elite, bacterial blight resistant indica rice variety, improved samba mahsuri. Euphytica 212:331–342. https://doi.org/10.1007/S10681-016-1784-1

    Article  Google Scholar 

  • Magallanes-López AM, Ammar K, Morales-Dorantes A, González-Santoyo H, Crossa C, Guzmán C (2017) Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. J Cereal Sci 75(1):1–9

    Article  Google Scholar 

  • Mahajan R, Kapoor N (2019) Molecular breeding strategies for genetic improvement in rice (Oryza sativa L.). In: Advances in plant breeding strategies: cereals. Springer, Cham, pp 317–341

    Chapter  Google Scholar 

  • Maharajan T, Krishna TPA, Kiriyanthan RM et al (2021) Improving abiotic stress tolerance in sorghum: focus on the nutrient transporters and marker-assisted breeding. Planta 254:90

    Article  CAS  PubMed  Google Scholar 

  • Malik AI, Colmer TD, Lamber H, Schortemeyer M (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust J Plant Physiol 28:1121–1131

    Google Scholar 

  • Mallik S (1995) Rice germplasm evaluation and improvement for stagnant flooding. In: Ingram KT (ed) Rainfed lowland rice: agricultural research for high-risk environments. International Rice Research Institute, Manila, pp 97–109

    Google Scholar 

  • Mallik S, Mandal BK, Sen SN, Sarkarung S (2002) Shuttle Breeding: an effective tool for rice varietal improvement in rainfed lowland ecosystem in eastern India. Curr Sci 83(9):1097–1102

    Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP (2018) wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886

    Article  PubMed  PubMed Central  Google Scholar 

  • Manickavelu A, Nadarajan N, Ganesh SK, Gnanamalar RP, Chandra Babu R (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50(2):121–138

    Article  CAS  Google Scholar 

  • Mano Y, Omori F (2013) Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Ann Bot 112:1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Omori F, Muraki M, Takamizo T (2005) QTL mapping of adventitious root formation under flooding conditions in tropical maize. Breed Sci 55:343–347

    Article  Google Scholar 

  • Mano Y, Omori F, Loaisiga CH, Bird RM (2009) QTL mapping of aboveground adventitious roots during flooding in maize x teosinte Zea nicaraguensis backcross population. Plant Roots 3:3–9

    Article  CAS  Google Scholar 

  • Marone D, Russo MA, Mores A, Ficco DBM, Laidò G, Mastrangelo AM, Borrelli GM (2021) Importance of landraces in cereal breeding for stress tolerance. Plants 10(7):1267. https://doi.org/10.3390/plants10071267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall A (2014) Drought–tolerant varieties begin global march. Nat Biotechnol 32(4):308

    Article  CAS  Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89(6):683–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer LI, Rattalino Edreira JI, Maddonni GA (2014) Oil yield components of maize crops exposed to heat stress during early and late grain-filling stages. Crop Sci 54(5):2236–2250

    Article  Google Scholar 

  • Meena HP, Bainsla NK, Yadav DK (2017) Breeding for abiotic stress tolerance in crop plants. In: Yadav P, Kumar S, Jain V (eds) Recent advances in plant stress physiology. Daya Publishing House, pp 329–378

    Google Scholar 

  • Meena MR, Kumar R, Chinnaswamy A, Karuppaiyan R, Kulshreshtha N, Ram B (2020) Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions. 3 Biotech 10(10):440. https://doi.org/10.1007/s13205-020-02416-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Melchiorre M, Robert G, Trippi V, Racca R, Lascano HR (2009) Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul 57:57–68

    Article  CAS  Google Scholar 

  • Merchant A, Richter AA (2011) Polyols as biomarkers and bioindicators for 21st century plant breeding. Funct Plant Biol 38(12):934–940

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheletti N, Chandler JH, Lane SN (2015a) Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surf Process Landf 40(4):473–486

    Article  Google Scholar 

  • Micheletti N, Lane SN, Chandler JH (2015b) Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes. Photogramm Rec 30(150):143–165

    Article  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  CAS  PubMed  Google Scholar 

  • Miller TE, Iqbal N, Reader SM, Mahmood A, Cant KA, King IP (1997) Acytogenetic approach to the improvement of aluminum tolerance in wheat. New Phytol 137:93–98

    Article  Google Scholar 

  • Minella E, Sorrells ME (1992) Aluminum tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Sci 32(3):593–598

    Article  CAS  Google Scholar 

  • Mir AS, Maria M, Muhammad S, Ali SM (2020) Potential of mutation breeding to sustain food security. In: Maia RT, de Araújo Campos M (eds) Genetic variation. IntechOpen. https://doi.org/10.5772/intechopen.94087

    Chapter  Google Scholar 

  • Mirza N, Marla SS (2019) Finger millet (Eleusine coracana L. Gartn.) breeding. In: Advances in plant breeding strategies: cereals. Springer, Cham, pp 83–132

    Chapter  Google Scholar 

  • Mishra B (1994) Breeding for salt tolerance in crops. In: Rao et al (eds) Salinity management for Sustainable agriculture: 25 years research at CSSRI. Central Soil Salinity Research Institute, Karnal, pp 226–259

    Google Scholar 

  • Moharil MP, Ingle KP, Jadhav PV, Gawai DC, Khelurkar VC, Suprasanna P (2019) Foxtail millet (Setaria italica L.): potential of smaller millet for future breeding. In: Advances in plant breeding strategies: cereals. Springer, Cham, pp 133–163

    Chapter  Google Scholar 

  • Mola T (2021) Ethiopian Sorghum [Sorghum bicolor (L.)] landraces: sources of biotic and abiotic stress resistance. Int J Recent Res Interdiscip Sci 8(4):1–13

    Google Scholar 

  • Mondal S, Dutta S, Crespo-Herrera L et al (2020) Fifty years of semi-dwarf spring wheat breeding at CIMMYT: grain yield progress in optimum, drought and heat stress environments. Field Crop Res 250:107757

    Article  Google Scholar 

  • Monjardino P, Smith AG, Jones RJ (2005) Heat stress effects on protein accumulation of maize endosperm. Crop Sci 45(4):1203–1210

    Article  CAS  Google Scholar 

  • Morgan JB, Connolly EL (2013) Plant-soil interactions: nutrient uptake. Nat Educ 4:2

    Google Scholar 

  • Mukhopadhyay J, Roychoudhury A (2018) Cold-induced injuries and signaling responses in plants. In: Wani SH, Herath V (eds) Cold tolerance in plants: physiological, molecular and genetic perspectives. Springer International Publishing, Cham, pp 1–35

    Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125(4):1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Guo J, Passioura JB, Cramer GR (2000) Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Funct Plant Biol 27:949–957

    Article  Google Scholar 

  • Mut Z, Akay H, Aydin N (2010) Effects of seed size and drought stress on germination and seedling growth of some oat genotypes (Avena sativa L.). Afr J Agric Res 5(10):1101–1107

    Google Scholar 

  • Mwadzingeni L, Figlan S, Shimelis H et al (2017) Genetic resources and breeding methodologies for improving drought tolerance in wheat. J Crop Improv 31:648

    Article  Google Scholar 

  • Mwando E, Han Y, Angessa TT, Zhou G, Hill CB, Zhang X-Q, Li C (2020) Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Front Plant Sci 11:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Nable RO (1988) Resistance to boron toxicity amongst several barley and wheat cultivars: a preliminary examination of the resistance mechanism. Plant Soil 112:45–52

    Article  CAS  Google Scholar 

  • Nachimuthu VV, Sabariappan R, Muthurajan R, Kumar A (2017) Breeding rice varieties for abiotic stress tolerance: challenges and opportunities. In: Abiotic stress management for resilient agriculture. Springer, Singapore, pp 339–361

    Chapter  Google Scholar 

  • Nagaraju M, Kumar SA, Reddy PS, Kumar A, Rao DM, Kavi Kishor PB (2019) Genome-scale identification, classification, and tissue specific expression analysis of late embryogenesis abundant (LEA) genes under abiotic stress conditions in Sorghum bicolor L. PLoS One 14(1):e0209980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naredo M, Cairns EBJ, Wang H, Atienza G, Sanciangco MD, Melgar RJA, Kumar A, Ramaiah V, Serraj R, Mc Nally KL (2009) EcoTILLING as a SNP discovery tool for drought candidate genes in Oryza sativa germplasm. Philippine J Crop Sci 34:10–16

    Google Scholar 

  • Nayyeripasand L, Garoosi GA, Ahmadikhah A (2021) Genome-wide association study (GWAS) to identify salt-tolerance qtls carrying novel candidate genes in rice during early vegetative stage. Rice 14:9. https://doi.org/10.1186/s12284-020-00433-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BC, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115(6):767–776

    Article  CAS  PubMed  Google Scholar 

  • Negrão S, Almadanim C, Pires I, McNally KL, Oliveira MM (2011) Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genet Resour 9:300–304

    Article  Google Scholar 

  • Nelimor C, Badu-Apraku B, Tetteh AY, Garcia-Oliveira AL, N’guetta AS (2020) Assessing the potential of extra-early maturing landraces for improving tolerance to drought, heat, and both combined stresses in maize. Agronomy 10(3):318

    Article  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niroula RK, Pucciariello C, Ho VT, Novi G, Fukao T, Perata P (2012) SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J 72:282–293

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama I (1995) Damage due to extreme temperatures. In: Matsuo T, Kumazawa K, Ishii R, Ishihara H, Hirata H (eds) Science of the rice plant. Food and Agriculture Policy Research Center, Tokyo, pp 769–812

    Google Scholar 

  • Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H (2017) Biotechnological advancements for improving floral attributes in ornamental plants. Front Plant Sci 8:530

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuttall JG, O’leary GJ, Panozzo JF, Walker CK, Barlow KM, Fitzgerald GJ (2017) Models of grain quality in wheat—a review. Field Crop Res 202(12):136–145

    Article  Google Scholar 

  • Oakes J, Balota M, Thomason WE, Cazenave AB, Sarkar S, Sadeghpour A (2019) Using unmanned aerial vehicles to improve N management in winter wheat. Paper presented at the ASA, CSSA, SSSA International Annual Meeting 2019, San Antonio, TX

    Google Scholar 

  • Olugbire OO, Olorunfemi S, Oke DO (2021) Global utilisation of cereals: sustainability and environmental issues. Agro-Science 20:9–14

    Article  Google Scholar 

  • Onwueme IC, Laude HM, Huffaker RC (1971) Nitrate reductase activity in relation to heat stress in barley seedlings 1. Crop Sci 11(2):195–200

    Article  CAS  Google Scholar 

  • Oraby HF, Ransom CB, Kravchenko AN, Sticklen MB (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci 45:2218–2227

    Article  CAS  Google Scholar 

  • Osman KT (2012) Soils: principles, properties and management. Springer Science and Business Media

    Google Scholar 

  • Othman Y, Al-Karaki G, Al-Tawaha AR, Al-Horani A (2006) Variation in germination and ion uptake in barley genotypes under salinity conditions. World J Agric Sci 2:11–15

    Google Scholar 

  • Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  • Panda D, Barik J (2021) Flooding tolerance in rice: focus on mechanisms and approaches. Rice Sci 28(1):43–57

    Article  Google Scholar 

  • Pandey S, Singh A, Parida SK, Prasad M (2022) Combining speed breeding with traditional and genomics-assisted breeding for crop improvement. Plant Breed 141(3):301–313

    Article  CAS  Google Scholar 

  • Pantalião GF, Narciso M, Guimarães C et al (2016) Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit. Genetica 144:651–664

    Article  PubMed  Google Scholar 

  • Papanikolaou Y, Fulgoni VL (2017) Certain grain foods can be meaningful contributors to nutrient density in the diets of US chil-dren and adolescents: data from the National Health and Nutrition Examination Survey, 2009–2012. Nutrients 9:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry MA, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89(7):833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil M, Ramu SV, Jathish P, Sreevathsa R, Reddy PC, Prasad TG, Udayakumar M (2014) Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnol Rep 8:161–169

    Article  Google Scholar 

  • Pedersen O, Rich SM, Colmer TD (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. Plant J 58(1):147–156

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  • Phan TTT, Ishibashi Y, Miyazaki M, Tran HT, Okamura K, Tanaka S, Nakamura J, Yuasa T, Iwaya-Inoue M (2013) High temperature-induced repression of the rice sucrose transporter (Os SUT 1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. J Agron Crop Sci 199(3):178–188

    Article  CAS  Google Scholar 

  • Pineda M, Baron M, Perez-Bueno ML (2020) Thermal imaging for plant stress detection and phenotyping. Remote Sens 13(1):68

    Article  Google Scholar 

  • Pintó-Marijuan M, Munné-Bosch S (2014) Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. J Exp Bot 65(14):3845–3857

    Article  PubMed  Google Scholar 

  • Poli Y, Basava RK, Panigrahy M, Vinukonda VP, Dokula NR, Voleti SR, Desiraju S, Neelamraju S (2013) Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB (2020) Global role of crop genomics in the face of climate change. Front Plant Sci 11:922. https://doi.org/10.3389/fpls.2020.00922

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855

    Article  CAS  PubMed  Google Scholar 

  • Prasanna BM, Cairns JE, Zaidi PH, Beyene Y, Makumbi D, Gowda M et al (2021) Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theor Appl Genet 134:1729–1752

    Article  PubMed  PubMed Central  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  CAS  PubMed  Google Scholar 

  • Priya M, Dhanker OP, Siddique KH, HanumanthaRao B, Nair RM, Pandey S, Singh S, Varshney RK, Prasad PV, Nayyar H (2019) Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theor Appl Genet 132(6):1607–1638

    Article  PubMed  Google Scholar 

  • Puram VRR, Ontoy J, Subudhi PK (2018) Identification of QTLs for salt tolerance traits and prebreeding lines with enhanced salt tolerance in an introgression line population of rice. Plant Mol Biol Rep 36:695–709

    Article  CAS  Google Scholar 

  • Purugganan MD (2019) Evolutionary insights into the nature of plant domestication. Curr Biol 29(14):R705–R714

    Article  CAS  PubMed  Google Scholar 

  • Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman H, Jagadeeshselvam N, Valarmathi R, Sachin B, Sasikala R et al (2014) Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol Biol 85:485–503

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Khatun H, Sarker MR, Hossain H, Quddus MR, Iftekharuddaula KM, Kabir MS (2021) Enhancing abiotic stress tolerance to develop climate-smart rice using holistic breeding approach. Cereal Grains 2:91

    Google Scholar 

  • Rai KN, Hash CT, Singh AK, Velu G (2008) Adaptation and quality traits of a germplasm-derived commercial seed parent of pearl millet. Plant Genet Resour Newslett 154:20–24

    Google Scholar 

  • Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T (2019) Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. Int J Mol Sci 20:2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao Balakrishna MJ, Biswas S (1979) Rainfed lowland rice in India. In: Rainfed lowland rice: selected papers from the 1978 International Rice Research Conference. Los Banos. International Rice Research Institute, P.O. Box 933, Manila, Philippines, pp 87–94

    Google Scholar 

  • Rauf S, Teixeira da Silva DA, Khan AA, Naveed A (2010) Consequences of plant breeding on genetic diversity. Int J Plant Breed 1:1–21

    Google Scholar 

  • Raza MM, Ullaz S, Aziz T, Abbas T, Yousaf MM, Altay V, Ozturk M (2019) Alleviation of salinity stress in maize using silicon nutrition. Not Bot Horti Agrobot Cluj-Napoca 47:1340–1347

    Article  CAS  Google Scholar 

  • Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163(4):1609–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remondino F, Spera MG, Nocerino E, Menna F, Nex F (2014) State of the art in high density image matching. Photogramm Rec 29(146):144–166

    Article  Google Scholar 

  • Ren S, Qin Q, Ren H, Sui J, Zhang Y (2005) Heat and drought stress advanced global wheat harvest timing from 1981–2014. Remote Sens 11:971. https://doi.org/10.3390/rs11080971

    Article  Google Scholar 

  • Reyes-Valdés MH (2000) A model for marker-based selection in gene introgression breeding programs. Crop Sci 40:91–98

    Article  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58(2):351–360

    Article  CAS  PubMed  Google Scholar 

  • Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins NC (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J Exp Bot 62:1201–1216

    Article  CAS  PubMed  Google Scholar 

  • Robertsen CD, Hjortshøj RL, Janss LL (2019) Genomic selection in cereal breeding. Agronomy 9(2):95

    Article  Google Scholar 

  • Rohini G, Mohit V, Shashank A, Rama S, Manoj M, Mukesh J (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21:69–84

    Article  Google Scholar 

  • Rollins J, Habte E, Templer SE, Colby T, Schmidt J, Von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64:3201–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothermel M, Wenzel K, Fritsch D, Haala N (2012) SURE: photogrammetric surface reconstruction from imagery. In: Proceedings LC3D Workshop, Berlin, vol 8, no 2

    Google Scholar 

  • Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, Reynolds M, Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes, Genetics 6(9):2799–2808

    Article  PubMed  Google Scholar 

  • Sabar M, Shabir G, Shah SM, Aslam K, Naveed SA, Arif M (2019) Identification and mapping of QTLs associated with drought tolerance traits in rice by a cross between Super Basmati and IR55419-04. Breed Sci 69(1):169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ (2017) Automated method to determine two critical growth stages of wheat: heading and flowering. Front Plant Sci 8:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghpour A, Oakes J, Sarkar S, Balota M (2017) Precise nitrogen management of biomass sorghum using vegetation indices. ASA, CSSA and SSSA International Annual Meetings Tampa, FL

    Google Scholar 

  • Sahoo S, Adhikari S, Joshi A, Singh NK (2021) Use of wild progenitor teosinte in maize (Zea mays subsp. mays) improvement: present status and future prospects. Trop Plant Biol 14:156–179

    Article  CAS  Google Scholar 

  • Saleem S, Mushtaq NU, Shah WH, Rasool A, Hakeem KR, Rehman RU (2021) Morpho-physiological, biochemical and molecular adaptation of millets to abiotic stresses: a review. Phyton 90(5):1363

    Article  Google Scholar 

  • Sanchez A, Subudhi P, Rosenow D et al (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Sandhu N, Yadav S, Kumar A (2020) Advances in developing multigene abiotic and biotic stress-tolerant rice varieties. In: Fahad S, Saud S, Chen Y, Wu C, Wang D (eds) Abiotic stress in plants. IntechOpen. https://doi.org/10.5772/intechopen.93751

    Chapter  Google Scholar 

  • Sarkar S (2021) High-throughput estimation of soil nutrient and residue cover: a step towards precision agriculture. In: Soil science: fundamentals to recent advances. Springer, Singapore, pp 581–596

    Chapter  Google Scholar 

  • Sarkar S, Jha PK (2020) Is precision agriculture worth it? Yes, may be. J Biotechnol Crop Sci 9(14):4–9

    Google Scholar 

  • Sarkar RK, Reddy JN, Sharma SG, Ismail AM (2006) Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr Sci 91:899–906

    CAS  Google Scholar 

  • Sarla N, Mallikarjuna Swamy BP (2005) Oryza glaberrima: a source for the improvement of Oryza sativa. Curr Sci 89:955–963

    Google Scholar 

  • Schanda J (2007) Colorimetry: understanding the CIE system. Wiley

    Book  Google Scholar 

  • Schläppi MR, Jackson AK, Eizenga GC, Wang A, Chu C, Shi Y, Shimoyama N, Boykin DL (2017) Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA mini-core collection. Front Plant Sci 8:957

    Article  PubMed  PubMed Central  Google Scholar 

  • Seetharam K, Kuchanur PH, Koirala KB et al (2021) Genomic regions associated with heat stress tolerance in tropical maize (Zea mays L.). Sci Rep 11:13730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal D, Autrique E, Singh R et al (2017) Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci Rep 7:41578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PV, Nayyar H (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705

    Article  PubMed  PubMed Central  Google Scholar 

  • Selamat N, Nadarajah KK (2021) Meta-analysis of quantitative traits loci (QTL) identified in drought response in rice (Oryza sativa L.). Plants 10(4):716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV et al (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  Google Scholar 

  • Sharma V (2009) Identification of drought-related quantitative trait loci (QTL) in sugarcane (Saccharum spp.) using genic markers. PhD Dissertation, Texas A & M Univ, TX, p 64

    Google Scholar 

  • Sharma DK, Torp AM, Rosenqvist E, Ottosen CO, Andersen SB (2017) QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat. Front Plant Sci 8:1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Jaiswal JP, Singh NK, Chauhan A, Gahtyari NC (2018) Developing a selection criterion for terminal heat tolerance in bread wheat based on various morpho-physiological traits. Int J Curr Microbiol Appl Sci 7:2716–2726

    Article  Google Scholar 

  • Sharma G, Upadyay AK, Biradar H, Hittalmani S (2019) OsNAC-like transcription factor involved in regulating seed-storage protein content at different stages of grain filling in rice under aerobic conditions. J Genet 98:18

    Article  PubMed  Google Scholar 

  • Sharma D, Jaiswal JP, Gahtyari NC, Chauhan A, Chhabra R, Saripalli G, Singh NK (2020) Population structure, association analysis and identification of candidate genes for terminal heat stress relevant traits in bread wheat (Triticum aestivum L. em Thell). Plant Genet Resour 18(3):168–178. https://doi.org/10.1017/S1479262120000131

    Article  CAS  Google Scholar 

  • Sharma D, Jaiswal JP, Gahtyari NC, Chauhan A, Singh NK (2021) Genetic dissection of physiological traits over trait based breeding in bread wheat conferring terminal heat tolerance. Cereal Res Commun 49:663–671. https://doi.org/10.1007/s42976-021-00139-z

    Article  CAS  Google Scholar 

  • Shashidhar HE, Kanbar A, Toorchi M, Raveendra GM, Kundur P, Vimarsh HS, Soman R, Kumar NG, Bekele BD, Bhavani P (2012) Breeding for drought resistance using whole plant architecture—conventional and molecular approach. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech. https://doi.org/10.5772/54983. ISBN: 978-953-51-1090-3

    Chapter  Google Scholar 

  • Shavrukov Y, Gupta N, Miyazaki J, Baho M, Chalmers K, Tester M, Langridge P, Collins N (2010) HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics 10:277–291

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Gao M, Yan J, Li ZL, Leng P, Yang Q, Duan SB (2020) Hyperspectral estimation of soil organic matter content using different spectral preprocessing techniques and PLSR method. Remote Sens 12(7):1206

    Article  Google Scholar 

  • Shi J, Gao H, Wang H et al (2017a) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Gao L, Wu Z, Zhang X, Wang M, Zhang C, Zhang F, Zhou Y, Li Z (2017b) Genomewide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol 17(1):92. https://doi.org/10.1186/s12870-017-1044-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in Maize. Front Plant Sci 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Shikha K, Shahi JP, Vinayan MT et al (2021) Genome-wide association mapping in maize: status and prospects. 3 Biotech 11:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Shilin D, Chaolei L, Lianguang S, Shenglong Y, Anpeng Z, Hongzhen J, Banpu R, Guonan F, Biao T, Guoyou Y, Longbiao G, Qian Q, Zhenyu G (2021) Identification of QTLs for cadmium tolerance during seedling stage and validation of qCDSL1 in rice. Rice Sci 28(1):81–88. https://doi.org/10.1016/j.rsci.2020.11.009

    Article  Google Scholar 

  • Shivhare R, Lata C (2017) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069. https://doi.org/10.3389/fpls.2016.02069

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrivastava AK, Pathak AD, Misra V, Srivastava S, Swapna M, Shukla SP (2017) Sugarcane crop: its tolerance towards abiotic stresses. In: Abiotic stress management for resilient agriculture. Springer, Singapore, pp 375–397

    Chapter  Google Scholar 

  • Singh S, Singh ON, Singh RK (1998) A shuttle breeding approach to rice improvement for rainfed lowland ecosystem in eastern India. In: Sustainable agriculture for food, energy and industry. James and James, Science Publishers, Ltd, London, pp 105–115

    Google Scholar 

  • Singh RK, Mishra B, Ismail AM, Gregorio GB (2009) Breeding rice for salt-affected areas of India. In: Hossain M, Bennett J, Mackill D, Hardy B (eds) Progress in crop improvement research. International Rice Research Institute, Los Baños, pp 78–90

    Google Scholar 

  • Singh K, Neelam K, Kaur A, Kaur K (2016a) Rice. In: Singh M, Kumar S (eds) Broadening the genetic base of grain cereals. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3613-9_3

    Chapter  Google Scholar 

  • Singh R, Singh Y, Xalaxo S, Verulkar SB, Yadav N, Singh S, Singh N, Prasad K, Kondayya K, Rao PR et al (2016b) From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Krishnan SG, Nagarajanl M, Bhowmick PK, Ellur RK, Haritha B, Vinod KK, Prabhu KV, Khanna A, Singh UD, Sharma TR (2017) Variety Pusa Basmati 1637

    Google Scholar 

  • Singh S, Vikram P, Sehgal D et al (2018) Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Sci Rep 8:12527

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh P, Singh I, Shah K (2019) Reduced activity of nitrate reductase under heavy metal cadmium stress in rice: an in silico answer. Front Plant Sci 9:1948. https://doi.org/10.3389/fpls.2018.01948

    Article  PubMed  PubMed Central  Google Scholar 

  • Slayter RO (1973) The effect of internal water status on plant growth, development and yield. In: Slayter RO (ed) Plant response to climatic factors. Proc. Uppsala Symp. UNESCO, Paris, pp 177–191

    Google Scholar 

  • Sohail Q, Inoue T, Tanaka H, Eltayeb AE, Matsuoka Y, Tsujimoto H (2011) Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed Sci 61:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song P, Wang J, Guo X, Yang W, Zhao C (2021) High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J 9(3):633–645

    Article  Google Scholar 

  • Spolaor LT, Guirado GC, Scapim CA, Kuki MC, Bertagna FA, Ferreira JM, Zucareli C, Gonçalves LS (2018) Brazilian maize landraces variability under high and low phosphorus inputs. Maydica 63(1):8

    Google Scholar 

  • Steffens B, Wang J, Santer M (2006) Interactions between ethylene, gibberellins and abscisic acid regulate emergence and growth rate of adventitious roots in deep water rice. Planta 223:604–612

    Article  CAS  PubMed  Google Scholar 

  • Stølen OLAV, Andersen S (1978) Inheritance of tolerance to low soil pH in barley. Hereditas 88(1):101–105

    Article  Google Scholar 

  • Sukumaran S, Jarquin D, Crossa J, Reynolds MP (2018) Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. Palnt Genome. https://doi.org/10.3835/plantgenome2017.12.0112

  • Sukumaran S, Krishna H, Singh K, Mottaleb KA, Reynolds M (2021) Progress and prospects of developing climate resilient wheat in south asia using modern pre-breeding methods. Curr Genomics 22(6):440–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Rutkoski J, Poland JA, Crossa J, Jannink JL, Sorrells ME (2017) Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield. Plant Genome. https://doi.org/10.3835/plantgenome2016.11.0111

  • Szareski VJ, Carvalho IR, da Rosa TC, Dellagostin SM, de Pelegrin AJ, Barbosa MH, dos Santos OP, Muraro DS, de Souza VQ, Pedó T, Aumonde TZ (2018) Oryza Wild Species: an alternative for rice breeding under abiotic stress conditions. Am J Plant Sci 9(06):1093

    Article  Google Scholar 

  • Szepesi Á (2020) Role of metabolites in abiotic stress tolerance. In: Tripathi DK, Singh VP, Chauhan DK, Sharma S, Prasad SM, Dubey NK, Ramawat N (eds) Plant life under changing environment. Academic, pp 755–774

    Chapter  Google Scholar 

  • Tammam AM, El-Ashmoony MSF, El-Sherbeny AA, Amin AL (2004) Selection responses for drought tolerance in two bread wheat crosses. Egypt J Agric Res 82:1213–1226

    Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants. https://doi.org/10.1038/nplants.2017.18

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Thoen MP, Davila Olivas NH, Kloth KJ, Coolen S, Huang PP, Aarts MG, Bac-Molenaar JA, Bakker J, Bouwmeester HJ, Broekgaarden C, Bucher J (2017) Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol 213(3):1346–1362

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira KS, Takebayashi Y, Kojima M, Sakakibara H, Toyooka K (2017) Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J 90(1):61–78

    Article  CAS  PubMed  Google Scholar 

  • Tomlekova NB (2010) Induced mutagenesis for crop improvement in Bulgaria. Plant Mutat Rep 2(2):6

    Google Scholar 

  • Tripathi D, Nam A, Oldenburg DJ, Bendich AJ (2020) Reactive oxygen species, antioxidant agents, and DNA damage in developing maize mitochondria and plastids. Front Plant Sci 11:596

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkan I (2018) ROS and RNS: key signalling molecules in plants. J Exp Bot 69(14):3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner NC (2018) Turgor maintenance by osmotic adjustment: 40 years of progress. J Exp Bot 69(13):3223–3233

    Article  CAS  PubMed  Google Scholar 

  • Valkoun J (2001) Wheat pre-breeding using wild progenitors. In: Bedo Z, Lang L (eds) Wheat in a global environment. Kluwer Academic Publishers, Dordrecht, pp 699–707

    Chapter  Google Scholar 

  • Vasistha NK, Balasubramaniam A, Mishra VK, Srinivasa J, Chand R, Joshi AK (2017) Molecular introgression of leaf rust resistance gene Lr34 validates enhanced effect on resistance to spot blotch in spring wheat. Euphytica 213(12):1–10

    Article  CAS  Google Scholar 

  • Verbeke S, Padilla Diaz CM, Haesaert G, Steppe K (2022) Osmotic adjustment in wheat (Triticum aestivum l.) during pre-and post-anthesis drought. Front Plant Sci. https://doi.org/10.3389/fpls.2022.775652

  • Verslues PE, Lasky JR, Juenger TE, Liu TW, Kumar MN (2014) Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiol 164(1):144–159

    Article  CAS  PubMed  Google Scholar 

  • Vierling RA, Nguyen HT (1992) Heat-shock protein gene expression in diploid wheat genotypes differing in thermal tolerance. Crop Sci 32:370–377

    Article  CAS  Google Scholar 

  • Villareal RL, Sayre K, Banuelos O, Mujeeb-Kazi A (2001) Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop Sci 41(1):274–274

    Article  Google Scholar 

  • Vinod KK, Krishnan SG, Thribhuvan R, Singh AK (2019) Genetics of drought tolerance, mapping QTLs, candidate genes and their utilization in rice improvement. In: Genomics assisted breeding of crops for abiotic stress tolerance, vol II. Springer, Cham, pp 145–186

    Chapter  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JK (2007) Simulation modeling in plant breeding: principles and applications. Agric Sci China 6:908–921

    Article  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  PubMed  Google Scholar 

  • Wang CR, Yang AF, Yue GD et al (2008) Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227:1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liu J, Guo H, He X, Wu W, Du J, Zhang Z, An X (2014) Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis. Plant Physiol Biochem 83:107–116

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Singh D, Marla S, Morris G, Poland J (2018) Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 14(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xuan H, Evers B, Shrestha S, Pless R, Poland J (2019) High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. Giga Sci 8(11):120

    Google Scholar 

  • Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, Kobayashi M, Yano K, Tokunaga T, Fujiwara T, Tsutsumi N, Iwata H (2017) High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front Plant Sci 8(421). https://doi.org/10.3389/fpls.2017.00421

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29

    Article  PubMed  Google Scholar 

  • Wei B, Jing RL, Wang CS, Chen JB, Mao XG, Chang XP, Jia JZ (2009) Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol Breed 23:13–22

    Article  CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of the Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus deficient soil. Theor Appl Genet 105:890–897

    Article  CAS  PubMed  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc Lond Ser B Biol Sci 363(1492):703–716. https://doi.org/10.1098/rstb.2007.2179

    Article  CAS  Google Scholar 

  • Xiao YN, Li XH, George ML (2005) Quantitative trait loci analysis of drought tolerance and yield in maize in China. Plant Mol Biol Report 23:155–165

    Article  CAS  Google Scholar 

  • Xiong X, Duan L, Liu L, Tu H, Yang P, Wu D, Chen G, Xiong L, Yang W, Liu Q (2017) Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization. Plant Methods 13(1):1–15

    Article  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho TD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA7, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103):705–708

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Dai J, Luo W, Yin X, Li Y, Tai X, Han L, Chen Y, Lin L, Li G, Zou C, Du W, Diao M (2010) A photothermal model of leaf area index for greenhouse crops. Agric For Meteorol 150(4):541–552

    Article  Google Scholar 

  • Xu S, Hu B, He Z, Ma F, Feng J, Shen W, Yan J (2011) Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int J Mol Sci 12:2488–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43:529

    Article  PubMed  Google Scholar 

  • Xue Y, Lung SC, Chye ML (2016) Present status and future prospects of transgenic approaches for drought tolerance. In: Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS (eds) Drought stress tolerance in plants, vol 2. Springer, Cham

    Google Scholar 

  • Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of abiotic stress on crops. In: Hasanuzzaman M, Filho MCMT, Fujita M, Nogueira TAR (eds) Sustainable crop production. IntechOpen. https://doi.org/10.5772/intechopen.88434

    Chapter  Google Scholar 

  • Yang H, Gu X, Ding M, Lu W, Lu D (2018) Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci Rep 8(1):1–9

    Google Scholar 

  • Yoon Y, Seo DH, Shin H, Kim HJ, Kim CM, Jang G (2020) The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy 10(6):788

    Article  CAS  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202(4):1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Ni Z, Wang Y, Wan H, Hu Z, Jiang Q, Sun X, Zhang H (2019) Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci 285:68–78

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Li J, Bhatta M, Shi Y, Baenziger PS, Ge Y (2018) Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors 18(11):3731

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Cairns JE, Babu R, Gowda M, Makumbi D, Magorokosho C, Zhang A, Liu Y, Wang N, Hao Z, San Vicente F, Olsen MS, Prasanna BM, Lu Y, Zhang X (2019) Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front Plant Sci 9:1919. https://doi.org/10.3389/fpls.2018.01919

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sci 41:1321–1329

    Article  Google Scholar 

  • Zhang S, Li N, Gao F et al (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455–465

    Article  CAS  Google Scholar 

  • Zhang L, Li Z, Li J, Wang A (2013) Ectopic overexpression of SsCBF1, a CRT/DRE-binding factor from the nightshade plant Solanum lycopersicoides, confers freezing and salt tolerance in transgenic Arabidopsis. PLoS One 8:e61810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2016) Back into the wild—apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24. https://doi.org/10.1111/eva.12434

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    Article  CAS  PubMed  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adhikari, S. et al. (2023). SMART Plant Breeding from Pre-genomic to Post-genomic Era for Developing Climate-Resilient Cereals. In: Sharma, D., Singh, S., Sharma, S.K., Singh, R. (eds) Smart Plant Breeding for Field Crops in Post-genomics Era . Springer, Singapore. https://doi.org/10.1007/978-981-19-8218-7_2

Download citation

Publish with us

Policies and ethics