Skip to main content
Log in

Use of Wild Progenitor Teosinte in Maize (Zea mays subsp. mays) Improvement: Present Status and Future Prospects

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Domestication followed by selective breeding made maize an amazing crop, however, it leads to the loss of many allelic forms of those traits which were subjected to intensive selection. Such allelic forms can be recapitulated by domesticating wild alleles to diversify the germplasm and enhance the potential of maize. Teosinte, the wild relative of maize, possesses diverse novel alleles for resistance to abiotic-biotic stresses, yield improvement as well as quality enhancement. Evaluation of teosinte derived maize lines exhibited significant diversification in several agronomical traits, ear and kernel traits, yield, and adaptation. Quantitative trait loci (QTLs)/genes, after several genetical investigations on different beneficial traits, have been mapped using different mapping populations. Gene complexes in teosinte can be a great scientific weapon for agronomical trait improvement as well as increasing the resiliency. Wild relatives being promising genetic resources have not been investigated and validated comprehensively and therefore remained underutilized. In the paper, we have discussed about wild relatives, their status of utilization and prospects in maize improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikari S (2019) Characterization and QTL Mapping of teosinte derived maize population for BLSB Resistance and other traits (doctoral thesis). Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India

    Google Scholar 

  • Adhikari S, Joshi A, Singh NK (2019) Phenotypic characterization and microsatellite marker analysis of elite maize inbred and teosinte (Zea mays subsp. parviglumis) accession. Pantnagar J Res 17 (2):123–128.

  • Aditya P, Jitendra K (2014) Alien Gene Transfer in Crop Plants, Volume 2: Achievements and Impacts. Springer Science & Business Media.

  • Ahmad S, Veyrat N, Gordon-Weeks R et al (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amusan IO, Patrick JR, Abebe M et al (2008) Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol 178:157–166

    PubMed  Google Scholar 

  • Arora R (1977) Job’s-tears (Coix lacryma - jobi) – a minor food and fodder crop of North Eastern India. Econ Bot 31:358–366

    Google Scholar 

  • Balmer D, Flors V, Glauser G, Mauch-Mani B (2013) Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci 4:82

    PubMed  PubMed Central  Google Scholar 

  • Baltazar BM, Gonzalez JJ, Larios LDC, Schoper JB (2005) Pollination between maize and teosinte: an important determinant of gene flow in Mexico. Theor Appl Genet 110:519–526

    PubMed  Google Scholar 

  • Barry D, Widstrom NW, Darrah LL et al (1992) Maize ear damage by insects in relation to genotype and aflatoxin contamination in preharvest maize grain. J Econ Entomol 85:2492–2495

    Google Scholar 

  • Beatty P, Good A (2011) Future prospects for cereals that fix nitrogen. Science 333(6041):416–417

    CAS  PubMed  Google Scholar 

  • Bernal JS, Melancon JE, Zhu-Salzman K (2015) Clear advantages for fall army worm larvae from feeding on maize relative to its ancestor Balsas teosinte may not be reflected in their mother’s host choice. Entomol Exp Appl 155:206–217. https://doi.org/10.1111/eea.12299

    Article  Google Scholar 

  • Bird RMK (2000) A remarkable new teosinte from Nicaragua: growth and treatment of progeny. Maize Genet Coop News Lett 74:58-59

  • Bouis H, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40

    PubMed  Google Scholar 

  • Cai Z, Liu H, He Q et al (2014) Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. \hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genome 15:1025. https://doi.org/10.1186/1471-2164-15-1025

  • Cassidy ES, West PC, Gerber JS, Foley JA (2013) Redefining agricultural yields: from tonnes to people nourished per hectare. Environ Res Let 8:034015

    Google Scholar 

  • Chaudhary HK , Kaila V, Rather SA. (2014) Maize. Alien Gene Transfer in Crop Plants, A. Pratap and J. Kumar (eds.), https://doi.org/10.1007/978-1-4614-9572-7_2

  • Chavan S (2014) Expression profiling and analysis of resistance to Ustilago maydis in maize and teosinte, Doctoral dissertation, University of Georgia, Athens, Georgia.

  • Chavan S, Smith SM (2014) A rapid and efficient method for assessing pathogenecity of Ustilago maydis on maize and teosinte lines. J Vis Exp 83:e50712. https://doi.org/10.3791/50712

    Article  CAS  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015).Crop domestication and its impact on naturally selected tropic interactions. Annu Rev Entomol 60: in press.

  • Chittaranjan K (2011) Wild crop relatives: Genomic and breeding resources: Cereals. Springer Science & Business Media.

  • Davila-Flores AM, DeWitt TJ, Bernal JS (2013) Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Oecologia 173:1425–1437. https://doi.org/10.1007/s00442-013-2728-2

    Article  PubMed  Google Scholar 

  • Deynze VA, Pablo Zamora P, Delaux P et al (2018) Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol 16(8):e2006352. https://doi.org/10.1371/journal.pbio.2006352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J (1983) The taxonomy and evolution of Tripsacum and teosinte, the closest relatives of maize. In: Gordon DT, Knoke JK, Nault LR (eds) Proc. Intl. Maize Virus Disease Colloquium and Workshop. The Ohio State University, Ohio Agricultural Research and Development Centre, Wooster, Ohio, pp 15–28

    Google Scholar 

  • Doebley J (1990) Molecular Evidence and the Evolution of Maize. Econ Bot 44(S3):6-27

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59. https://doi.org/10.1146/annurev.genet.38.072902.092425

    Article  CAS  PubMed  Google Scholar 

  • Doebley JHH, Iltis (1980) Taxonomy of Zea (Gramineae). I. A sub generic classification with key to taxa. Amer J Bot 67:982–993

    Google Scholar 

  • Dong Z, Li W, Unger-Wallace E et al (2017) Ideal crop plant architecture is mediated by tassels replace upper ears1,a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proceedings of the National Academy of Sciences 114(41). https://doi.org/10.1073/pnas.1714960114

  • Ellstrand NC, Garner LC, Hegde S et al (2007) Spontaneous hybridization between maize and teosinte. J Hered 98:183–187

    CAS  PubMed  Google Scholar 

  • Erb M, Gordon-Weeks R, Flors V et al (2009) Below ground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signal Behav 4:636–638

    CAS  Google Scholar 

  • Erb M, Robert CAM, Hibbard BE, Turlings TCJ (2011) Sequence of arrival determines plant-mediated interactions between herbivores. J Ecol 99:7–15

    Google Scholar 

  • Eubanks MW (2006) A genetic bridge to utilize Tripsacum germplasm in maize improvement. Maydica 51:315–327

    Google Scholar 

  • Evans MMS, Kermicle JL (2001) Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor Appl Genet 103:259–265

    CAS  Google Scholar 

  • Farias-Rivera LA, Hernandez-Mendoza JL, Molina-Ochoa J, Pescador- Rubio A (2003) Effect of leaf extracts of teosinte, Zea diploperennis L., and a Mexican maize variety, criollo’uruapeño’, on the growth and survival of the fall army worm (Lepidoptera: Noctuidae). Fla Entomol 86:239–243. https://doi.org/10.1653/0015-4040(2003)086[0239:EOLEOT]2.0.CO;2

    Article  Google Scholar 

  • Findley WR, Nault LR, Styer WE, Gordon DT (1982) Inheritance of maize chlorotic dwarf virus resistance in maize × Zea diploperennis backcrosses. Maize News Lett 56:165–166

    Google Scholar 

  • Flint-Garcia SA (2013) Genetics and consequences of crop domestication. J Agric Food Chem 61:8267–8276

    CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Bodnar AL, Scott MP (2009) Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor Appl Genet 119:1129–1142

    PubMed  Google Scholar 

  • Gaudin ACM, Mc Clymont SA, Raizada M (2011) The Nitrogen Adaptation Strategy of the Wild Teosinte Ancestor of Modern Maize, subsp. Crop Sci 51(6):2780. https://doi.org/10.2135/cropsci2010.12.0686

    Article  CAS  Google Scholar 

  • Gepts P (2012) Biodiversity in agriculture: domestication, evolution, and sustainability. Cambridge University, Press

    Google Scholar 

  • Glauser G, Marti G, Villard N et al (2011) Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J 68:901–911

    CAS  PubMed  Google Scholar 

  • Gols R, Bullock J, Dicke M et al (2011) Smelling the wood from the trees: non-linear parasitoid responses to volatile attractants produced by wild and cultivated cabbage. J Chem Ecol 37:795–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • GonzaÂlez JJS, Corral JAR, García GM et al (2018) Eco-geography of teosinte. PLoS One 13(2):e0192676. https://doi.org/10.1371/journal.pone.0192676

    Article  CAS  Google Scholar 

  • Gupta HS, Hossain F, Nepolean T et al (2015) “Understanding genetic and molecular bases of Fe and Zn accumulation towards development of micronutrient-enriched maize,” in Nutrient Use Efficiency: from Basics to Advances, eds A. Rakshit, H. B. Singh, and A. Sen (Springer), 255–282. https://doi.org/10.1007/978-81-322-2169-2-17

  • Hannes D, Ruth JE, Luigi G et al (2014) Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology Sustain Food Syst 38(4):369–377

    Google Scholar 

  • Hitchcock AS (1951) Manual of grasses of the United States, Second edition, revised by A. Chase. U. S, Government Printing Office, Washington, DC

    Google Scholar 

  • Hoballah ME, Degen T, Bergvinson D et al (2004) Occurrence and direct control potential of parasitoids and predators of the fall army worm (Lepidoptera: Noctuidae) on maize in the subtropical lowlands of Mexico. Agric For Entomol 6:83–88

    Google Scholar 

  • Hodge A (2009) Root decisions. Plant, Cell Environ 32(6):628–640. https://doi.org/10.1111/j.1365-3040.2008.01891.x

    Article  Google Scholar 

  • Hossain F, Muthusamy V, Bhat JS et al (2016) Maize. DOI, Broadening the Genetic Base of Grain Cereals, Springer India. https://doi.org/10.1007/978-81-322-3613-9_4

    Book  Google Scholar 

  • Huang C, Sun H, Xu D et al (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences 115(2). https://doi.org/10.1073/pnas.1718058115

  • Hufford MB, Bilinski P, Pyhäjärvi T, Ross-Ibarra J (2012a) Teosinte as a model system for population and ecological genomics. Trends in Genet 28:606–615. https://doi.org/10.1016/j.tig.2012.08.004

    Article  CAS  Google Scholar 

  • Hufford M, Xu X, Heerwaarden J (2012b) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808-U118. https://doi.org/10.1038/ng.2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iltis HH, Doebley JF, Guzman RM, Pazy B (1979) Zea diploperennis (Gramineae): a new teosinte from Mexico. Science 203:186–188

    CAS  PubMed  Google Scholar 

  • Iltis HH, Benz BF (2000) Zea nicaraguensis (Poaceae), a new teosinte from pacific coastal Nicaragua. Novon 10:382–390

    Google Scholar 

  • Iltis HH, Doebley JF (1980) Taxonomy of Zea (Gramineae). II. Sub specific categories in the Zea mays complex and a generic synopsis. Am J Bot 67:994–1004

    Google Scholar 

  • Joshi A, Adhikari S, Singh NK (2021) Mapping genomic regions for red flour beetle (Tribolium castaneum (Herbst)) resistance in teosinte (Zea mays L. subsp. parviglumis H. H. Iltis & Doebley) derived maize backcross inbred line population. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-020-01083-3

  • Karn A, Gillman JD, Flint-Garcia SA (2017) Genetic Analysis of Teosinte Alleles for Kernel Composition Traits in Maize. G3 7(4):1157–1164.

  • Kermicle JL, Evans MMS (2010) The Zea mays sexual compatibility gene ga2: naturally occurring alleles, their distribution, and role in reproductive isolation. J Hered 101:737–749

    CAS  PubMed  Google Scholar 

  • Kermicle JL, Taba S, Evans MMS (2006) The gametophyte-1 locus and reproductive isolation among Zea mays subspecies. Maydica 51:219–225

    Google Scholar 

  • Kindiger B, Sokolov V, Khatypova JV (1996) Evaluation of apomictic reproduction in a set of 39 chromosome maize Tripsacum backcross hybrids. Crop Sci 36:1108–1113

    Google Scholar 

  • Kling J, Fajemisin J, Badu-Apraku B et al (2000) “Striga resistance breeding in maize. Breeding for Striga resistance in cereals. Proceedings of a Workshop; Ibadan, Nigeria; 18–20 Aug 1999,” in Breeding for Striga Resistance in Cereals. Proceedings of a Workshop; Ibadan, Nigeria; 18–20 Aug 1999, eds A. Haussmann, B. I. G. Hess, D. E. Koyama, M. L. Grivet, L. Rattunde, H. W. Geiger, and H. H. A. Weikersheim (Weikersheim: Margraf Verlag), 376.

  • Kumar A, Singh NK, Adhikari S, Joshi A (2019) Morphological and molecular characterization of teosinte derived maize population. Indian J Genet 79(4):670–677. https://doi.org/10.31742/IJGPB.79.4.4

    Article  Google Scholar 

  • Lange ES, Balmer D, Mauch-Mani B, Turlings TC (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341. https://doi.org/10.1111/nph.13005

    Article  Google Scholar 

  • Lennon JR, Krakowsky M, Goodman M et al (2016) Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Sci 56:209–218. https://doi.org/10.2135/cropsci2014.07.0468

    Article  CAS  Google Scholar 

  • Li J, Chen F, Li Y et al (2019) ZmRAP2.7, an AP2 Transcription Factor, Is Involved in Maize Brace Roots Development. Front Plant Sci 10.https://doi.org/10.3389/fpls.2019.00820

  • Liang Y, Liu Q, Wang X et al (2019) ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol 221:2335–2347. https://doi.org/10.1111/nph.15512

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Cook J, Melia-Hancock S et al (2016a) Expanding maize genetic resources with pre-domestication alleles: Maize - teosinte introgression populations. Plant Genome 9(1). https://doi.org/10.3835/plantgenome2015.07.0053

  • Liu Z, Garcia A, McMullen MD, Flint-Garcia S A (2016b) Genetic analysis of kernel traits in maize-teosinte introgression populations. G3, 6 (8): 2523–2530.

  • Magoja JL, Pischedda G (1994) Maize × Teosinte Hybridization. In: Bajaj Y.P.S. (eds) Maize. Biotechnology in Agriculture and Forestry, Springer, Berlin, Heidelberg.25. https://doi.org/10.1007/978-3-642-57968-4_6

  • Mangelsdorf PC, Reeves RG (1931) Hybridization of maize, Tripsacum, and Euchlaena. J Hered 22:328–343

    Google Scholar 

  • Mangelsdorf PC, Reeves RG (1959) The origin of corn modern races, the product of teosinte introgression. Bot Mus Leafl Harv Univ 18:389–411

    Google Scholar 

  • Mano Y, Omori F, Takamizo T et al (2007) QTL mapping of root aerenchyma formation in seedlings of a maize rare teosinte “Zea nicaraguensis” cross. Plant Soil 295:103–113

    CAS  Google Scholar 

  • Mano Y, Omori F (2007) Breeding for flooding tolerant maize using “teosinte” as a germplasm resource. Plant Root 1:17–21

    CAS  Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize × teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223. https://doi.org/10.1270/jsbbs.58.217

    Article  Google Scholar 

  • Mano Y, Omori F (2013) Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Ann Bot 112:1125–1139. https://doi.org/10.1093/aob/mct160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T (2005) Varietal difference and genetic analysis of adventitious root formation at the soil surface during flooding in maize and teosinte seedlings. Jpn J Crop Sci 74:41–46

    CAS  Google Scholar 

  • Mano Y, Omori F, Loaisiga CH, Bird RM (2009) QTL mapping of above-ground adventitious roots during flooding in maize × teosinte “Zea nicaraguensis” backcross population. Plant Root 3:3–9. https://doi.org/10.3117/plantroot.3.3

    Article  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM et al (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci 99:6080–6084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzou ARS, Ju Q, Jianyu M, Zhizhai L (2017) Utilization of wild relatives for maize (Zea mays L.) improvement. African J Plant Sci 11(5): 105–113. https://doi.org/10.5897/ajps2017.1521

  • Menkir A, Kling JG, Badu-Apraku B, Ibikunle O (2006) Registration of 26 tropical maize germplasm lines with resistance to Striga hermonthica. Crop Sci 46:1007–1009

    Google Scholar 

  • Moya-Raygoza G (2016) Early development of leaf trichomes is associated with decreased damage in teosinte, compared with maize, by Spodoptera frugiperda (Lepidoptera: Noctuidae). Ann Entomol Soc Am 109:737–743. https://doi.org/10.1093/aesa/saw049

    Article  CAS  Google Scholar 

  • Mus F, Crook MB, Garcia K et al (2016) Symbiotic nitrogen fixation and the challenges to its extension to non-legumes. Appl Environ Microbiol 82(13):3698–3710. https://doi.org/10.1128/AEM.01055-16.PMID:27084023;PMCID:PMC4907175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutyambai DM, Bruce TJ, Midega CA et al (2015) Responses of parasitoids to volatiles induced by Chilo partellus oviposition on teosinte, a wild ancestor of maize. J Chem Ecol 41(4):323–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nault LR, Findley W (1982) Zea diploperennis: a primitive relative offers new traits to improve corn. Desert Plants 3:203–205

    Google Scholar 

  • Nault LR, Gordon DT (1982) Response of annual and perennial teosintes (Zea) to six maize viruses. Plant Dis 66:61–62

    Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    CAS  PubMed  Google Scholar 

  • Niazi IAK, Rafique A, Rauf S et al (2014) Simultaneous selection for stem borer resistance and forage related traits in maize (Zea mays subsp. mays L) × teosinte (Zea mays subsp. mexicana L) derived populations. Crop Protect 57:27–34. https://doi.org/10.1016/jcropro201310026

    Article  Google Scholar 

  • Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2 H-1, 4- benzoxazin-3 (4 H)-one: key defence chemicals of cereals. J Agric Food Chem 57:1677–1696. https://doi.org/10.1021/jf8034034

    Article  CAS  PubMed  Google Scholar 

  • Omori F, Mano Y (2007) QTL mapping of root angle in F2 populations from maize ‘B73’ × teosinte ‘Zea luxurians’. Plant Roots 1:57–65. https://doi.org/10.3117/plantroot157

    Article  CAS  Google Scholar 

  • Ottoboni LM, Leite A, Targon MLN et al (1990) Characterization of the storage protein in seed of Coix lacryma - jobi var Adlay. J Agric Food Chem 38:631–635

    CAS  Google Scholar 

  • Panwar VPS (2005) Management of maize stalk borer, Chilo partellus (Swinhoe) in maize. In: Zaidi PH, Singh NN (eds) Stresses on Maize in the Tropics. Directorate of Maize Research, New Delhi, pp 376–395

    Google Scholar 

  • Pásztor K, Borsos O (1990) Inheritance and chemical composition in inbred maize ( Zea mays L) × teosinte ( Zea mays subsp. mexicana (Schräder) Iltis) hybrids Növénytermelés 39:193–213

  • Patrick JR, Ejeta G (2008) Towards effective resistance to Striga in African maize. Plant Signal Behav 3(9):618–621. https://doi.org/10.4161/psb395750

    Article  Google Scholar 

  • Prischmann DA, Dashiell KE, Hibbard BE (2009) Assessing larval rootworm behaviour after contacting maize roots: Impact of germplasm, rootworm species and diapause status. J Appl Entomol 133(1):21–32. https://doi.org/10.1111/j.1439-0418.2008.01313.x

  • Ramirez DA (1997) Gene introgression in Maize ( Zea mays subsp. mays L) Philipp J Crop Sci 22:51–63.

  • Rank C, Rasmussen LS, Jensen SR et al (2004) Cytotoxic constituents of Alectra and Striga species. Weed Res 44:265–270

    CAS  Google Scholar 

  • Rao AB (1983) Technique of scoring for resistance in maize stalk borer (S. inferens) In: Techniques for scoring for resistance to the major insect pests of maize AICMIP, IARI, New Delhi, 16–26.

  • Rasmann S, K€ollner TG, Degenhardt J, et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    CAS  PubMed  Google Scholar 

  • Ray JD, Kindiger B, Sinclair TR (1999) Introgressing root aerenchyma into maize. Maydica 44:113–117

    Google Scholar 

  • Reeves RG, Mangelsdorf PC (1942) A proposed taxonomic change in the tribe Maydeae (family Gramineae). Am J Bot 29:815–817

    Google Scholar 

  • Rich PJ, Ejeta G (2008) Towards effective resistance to Striga in African maize. Plant Signal Behav 3:618–621

    PubMed  PubMed Central  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302(1–2):91–104

    CAS  Google Scholar 

  • Rosegrant MR, Ringler C, Sulser TB et al (2009) Agriculture and Food Security under Global Change: Prospects for 2025/2050 Background note for supporting the development of CGIAR Strategy and Results Framework International Food Policy Res Institute: Washington, DC

  • Sachan JKS, Sarkar KR (1985) The present status of Maydeae. Indian J Genet 45:480–491

    Google Scholar 

  • Sánchez GJJ, De La Cruz LL, Vidal MVA et al (2011) Three new teosintes (Zea sps., Poaceae) from México. Am J Bot 98: 1537–48 pmid:21875968

  • Shahid M, Esen A (1998) DIMBOA-glu concentration in different taxa of teosinte. Maize Genet Coop News Lett 72:23–24

    Google Scholar 

  • Sharma S, Carena M J (2016) Brace: a method for high throughput maize phenotyping of root traits for short-season drought tolerance. Crop Sci 56(6):2996–3004. https://doi.org/10.2135/cropsci2016020116

  • Shi J, Drummond BJ, Habben JE (2019) Ectopic expression of ARGOS8 reveals a role for ethylene in root‐lodging resistance in maize. The Plant J 97(2):378–390

  • Shull GH (1908) The composition of a field of maize. Am Breeders’ Assoc Rep 4:296–301

    Google Scholar 

  • Shull GH (1909) A pure-line method in corn breeding. Am Breeders’ Assoc Rep 5:51–59

    Google Scholar 

  • Sidorov FF, Shulakov IK (1962) Hybrids of maize and teosinte. Bul App Bot Genet Plant Breed 347:6–85

    Google Scholar 

  • Singh NK, Kumar A, Chandra H et al (2017) Enhancement of maize allelic diversity using wild relative teosinte (Zea mays subsp. parviglumis). Indian Plant Genet Resour 30(3):253–257

  • Swarup S, Timmermans MC, Chaudhuri S, Messing J (1995) Determinants of the high-methionine trait in wild and exotic germplasm may have escaped selection during early cultivation of maize. Plant J 8:359–368

    CAS  PubMed  Google Scholar 

  • Szczepaniec A, Widney SE, Bernal JS, Eubanks MD (2013) Higher expression of induced defences in teosintes (Zea species) is correlated with greater resistance to fall armyworm, Spodoptera frugiperda. Entomol Exp Appl 146:242–251. https://doi.org/10.1111/eea12014

    Article  Google Scholar 

  • Takahashi CG, Kalns LL, Bernal JS (2012) Plant defence against fall army worm in micro-sympatric maize (Zea mays subsp. mays) and Balsas teosinte (Zea mays subsp. parviglumis). Entomol Exp Appl 145:191–200. https://doi.org/10.1111/eea12004

    Article  Google Scholar 

  • Taramino G, Sauer M, Stauffer JL et al (2007) The maize (Zea mays L) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and postembryonic shoot-borne root initiation. Plant J 50:649–659

    CAS  PubMed  Google Scholar 

  • Throne JE, Eubanks MW (2015) Resistance of Tripsacum-introgressed maize lines to Sitophilus zeamais. J Stored Prod Res 64:62–64. https://doi.org/10.1016/jjspr201508006

    Article  Google Scholar 

  • Tian J, Wang C, Xia J et al (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658–664

    CAS  PubMed  Google Scholar 

  • Tian L, Li J, Bi W et al (2019) Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L) Under field conditions. Agric Water Manag 218:250–258

    Google Scholar 

  • Triplett EW (1996) Diazotrophic endophytes: Progress and prospects for nitrogen fixation in monocots. Plant Soil 186(1):29–38

    CAS  Google Scholar 

  • Venkateswarlu J, Chaganti RSK (1973) Job’s tears ( Coix lacryma - jobi L) ICAR Publication, New Delhi, 44

  • Vigouroux Y, Glaubitz JC, Matsuoka Y et al (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95(10):1240–1253. https://doi.org/10.3732/ajb0800097 (PMID: 21632329)

    Article  PubMed  Google Scholar 

  • Wang L, Qu M, Zhang X, Qiao Y (2014) Production of antihypertensive peptides by enzymatic zein hydrolysate from maize- Zea mays subsp. mexicana introgression line. Pak J Bot 46:1735–1740

    CAS  Google Scholar 

  • Wang L, Xu C, Qu M, Zhang J (2008) Kernel amino acid composition and protein content of introgression lines from Zea mays subsp. mexicana into cultivated maize. Cereal Sci 48:387–393

    CAS  Google Scholar 

  • Watson SA (2003) Description, development, structure, and composition of the corn kernel, pp 69–106 in CornChemistry and Technology, second edition edited by White P J, Johnson L A, American Association of Cereal Chemists, St Paul, MN

  • Wei WH, Qin R, Song YC (2001) Comparative analyses of disease resistant and non-resistant lines from maize × Zea diploperennis by GISH Bot Bull Acad Sin, 42,109–114 Available online at: https://ejournal.sinica.edu.tw/bbas/content/2001/2/bot422-04.html

  • Wei WH, Zhao WP, Song YC et al (2003) Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays × Zea diploperennis. Hereditas 138:21–26

    PubMed  Google Scholar 

  • Westgate ME, Bassetti P (1990) Heat and drought stress in corn: What really happens to the corn plant at pollination? In: Wilkinson, D(Ed), pp 12–28 In: Proceedings of the 45th Annual Corn and Sorghum Research Conference, Chicago, Dec 5–6, 1990 ASTA, Washington, D C

  • Westgate ME (1997) Physiology of flowering in maize: identifying avenues to improve kernel set during drought In: Developing Drought and Low N-Tolerant Maize Edmeades, G O, Banziger, M, Mickelson, H R and Peña-Valdivia, C B (Eds) Proceedings of a Symposium, March 25–29, CIMMYT, EL Batan, Mexico D F Mexico

  • Whipple CJ, Kebrom TH, Weber AL (2011) Grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proceedings of the National Academy of Sciences 108(33). https://doi.org/10.1073/pnas1102819108

  • Wills DM, Whipple CJ, Takuno S et al (2013) From Many, One: Genetic Control of Prolificacy during Maize Domestication. PLoS Genet 9(6). https://doi.org/10.1371/journal.pgen.1003604

  • Wright SI, Bi IV, Schroeder SG et al (2005) The Effects of Artificial Selection on the Maize Genome. Science 308(5726):1310–1314. https://doi.org/10.1126/science1107891

    Article  CAS  PubMed  Google Scholar 

  • Yallou C, Menkir A, Adetimirin V, Kling J (2009) Combining ability of maize inbred lines containing genes from Zea diploperennis for resistance to Striga hermonthica (Del) Benth Plant Breed 128:143–148. https://doi.org/10.1111/j.1439-0523.2008.01583.x

  • Yang J, Zhang J, Wang Z et al (2004) Activities of key enzymes in sucrose-to starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeid IM, Nermin AE (2001) Responses of drought tolerant varieties of maize to drought stress. Pak J Biol Sci 4:779–784

    Google Scholar 

  • Zhang X, Lin Z, Wang J et al ( 2019) The tin1 gene retains the function of promoting tillering in maize. Nat Commun 10:5608. https://doi.org/10.1038/s41467-019-13425-6

  • Zhang Z, Zhang X, Lin Z et al (2018) The genetic architecture of nodal root number in maize. The Plant J 93(6):1032–1044. https://doi.org/10.1111/tpj13828

  • Zhou H, Deng Y, Li J (1997) Inbred selection from distant hybridization of maize ( Zea mays L) × teosinte (Zea diploperennis L). Acta Agron Sin 23:333–337

    Google Scholar 

Download references

Acknowledgements

All India Coordinated Research Project on Maize, ICAR, New Delhi and Director Experiment Station, G. B. Pant University of Agriculture & Technology, Pantnagar are dully acknowledged for the support to carry out experiment on Teosinte.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of review (SS, NKS); preparation of manuscript (SS, NKS); Contribution of experimental evidences (NKS, SA,AJ); Compilation of information and table formulation (SS, NKS) Editing of manuscript (NKS, SA, AJ). All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Narendra Kumar Singh.

Ethics declarations

Consent for Publication

The manuscript has been approved by all authors.

Conflict of Interest

No.

Additional information

Communicated by: Hongwei Cai

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Adhikari, S., Joshi, A. et al. Use of Wild Progenitor Teosinte in Maize (Zea mays subsp. mays) Improvement: Present Status and Future Prospects. Tropical Plant Biol. 14, 156–179 (2021). https://doi.org/10.1007/s12042-021-09288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-021-09288-1

Keywords

Navigation