Skip to main content
Log in

Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phosphatidylinositol-specific phospholipase C (PI-PLC) plays an important role in a variety of physiological processes in plants, including drought tolerance. It has been reported that the ZmPLC1 gene cloned from maize (Zea mays L.) encoded a PI-PLC and up-regulated the expression in maize roots under dehydration conditions (Zhai SM, Sui ZH, Yang AF, Zhang JR in Biotechnol Lett 27:799–804, 2005). In this paper, transgenic maize expressing ZmPLC1 transgenes in sense or antisense orientation were generated by Agrobacterium-mediated transformation and confirmed by Southern blot analysis. High-level expression of the transgene was confirmed by real-time RT-PCR and PI-PLC activity assay. The tolerance to drought stress (DS) of the homogenous transgenic maize plants was investigated at two developmental stages. The results demonstrated that, under DS conditions, the sense transgenic plants had higher relative water content, better osmotic adjustment, increased photosynthesis rates, lower percentage of ion leakage and less lipid membrane peroxidation, higher grain yield than the WT; whereas those expressing the antisense transgene exhibited inferior characters compared with the WT. It was concluded that enhanced expression of sense ZmPLC1 improved the drought tolerance of maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MDA:

Malondialdehyde

MS:

Murashige and Skoog

PEG:

Polyethylene glycol

PI-PLC:

Phosphatidylinositol-specific phospholipase C

RWC:

Relative water content

References

  • Alexandre J, Lassalles JP, Kado RT (1990) Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature 343:567–570

    Article  CAS  Google Scholar 

  • Assmann SM, Shimazaki K (1999) The multisensory guard cell. Stomatal response to blue light and abscisic acid. Plant Physiol 119:809–815

    Article  PubMed  CAS  Google Scholar 

  • Banziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. CIMMYT, Mexico, D.F

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  Google Scholar 

  • Burnette RN, Gunesekera BM, Gillaspy GE (2003) An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol 132:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kao C (1997) Paraquat toxicity is reduced by metal chelators in rice leaves. Physiol Plant 101:471–476

    Article  CAS  Google Scholar 

  • Chapman KD (1998) Phospholipase activity during plant growth and development and in response to environmental stress. Trends Plant Sci 3:419–426

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Coca M, Penas G, Gómez J, Campo S, Bortolotti C, Messeguer J, Segundo BS (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406

    Article  PubMed  CAS  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment: advance in photosynthesis research. Kluwer, Dordrecht, p347

    Google Scholar 

  • Cousson A (2003) Two potential Ca2+-mobilizing processes depend on the abscisic acid concentration and growth temperature in the Arabidopsis stomatal guard cell. J Plant Physiol 160:493–501

    Article  PubMed  CAS  Google Scholar 

  • Das S, Hussain A, Bock C, Keller WA, Georges F (2005) Cloning of Brassica napus phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthase1 (BnPtdIns S1)—comparative analysis of the effect of abiotic stresses on the expression of phosphatidylinositol signal transduction-related genes in B. napus. Planta 220:777–784

    Article  PubMed  CAS  Google Scholar 

  • Dewald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4,5-biphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126:759–769

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1989) Isolation of plant DNA from fresh tissue. Am J Bot 75:1238

    Article  Google Scholar 

  • Flores A, Dorffling K (1990) A comparative study of the effects of abscisic acid and new terpenoid abscisic acid analogues on plant physiological processes. J Plant Growth Regul 9:133–139

    Article  CAS  Google Scholar 

  • Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12:111–123

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Helling D, Possart A, Cottier S, Klahre U, Kost B (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphoinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 92:3903–3907

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Mitsukawa N, Shibata D, Shino Zaki K (1997) AtPLC2, a gene encoding phosphoinositide-specific phospholipaseC, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Mol Biol 34:175–180

    Article  PubMed  CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  Google Scholar 

  • Hunt L, Mills LN, Pical C, Leckie CP, Aitken FL, Kopka J, Mueller-Roeber B, McAinsh MR, Hetherington AM, Gray JE (2003) Phospholipase C is required for the control of stomatal aperture by ABA. Plant J 34:47–55

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Kim JE, Lee J-H, Lee MH, Jung HW, Bahk YY, Hwang BK, Hwang I, Kim WT (2004) The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Lett 556:127–136

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  PubMed  CAS  Google Scholar 

  • Lee YC, Suh SL, Assmann S, Kelleher J, Crain C (1996) Abscisic acid-induced phosphoinositide turnover in guard cells protoplasm of Vicia faba. Plant Physiol 110:987–996

    PubMed  CAS  Google Scholar 

  • Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268:24559–24563

    PubMed  CAS  Google Scholar 

  • Lemtir-Chlieh F, MacRobbie EAC, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich G, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomemebrane store of calcium in guard cells. Proc Natl Acad Sci USA 100:10091–10095

    Article  CAS  Google Scholar 

  • Li L, Van Staden J, Jager AK (1998) Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul 25:81–87

    Article  CAS  Google Scholar 

  • Lichtenthaler KH (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Lin WH, Ye R, Ma H, Xu ZH, Xue HW (2004) DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Res 14:34–45

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Gao F, Cui SJ, Han JL, Sun DY, Zhou RG (2006) Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res 16:394–400

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Maiti RK, Amaya LED, Cardona SI, Dimas AMO, Castillo HDL (1996) Genotypic variability in maize cultivars for resistance to drought and salinity at the seedling stage. J Plant Physiol 148:741–744

    CAS  Google Scholar 

  • Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  • Meijer HJG, Arisz SA, van Himbergen JAJ, Musgrave A, Munnik T (2001) Hyperosmotic stress rapidly generates lysophosphatidic acid in Chlamydomonas. Plant J 25:541–548

    Article  PubMed  CAS  Google Scholar 

  • Melin P-M, Pical C, Jergil B, Sommarin M (1992) Polyphosphoinositide phospholipase C in wheat root plasma membranes. Partial purification and characterization. Biochim Biophys Acta 1123:163–169

    PubMed  CAS  Google Scholar 

  • Mills LN, Hunt L, Leckie CP, Aitken FL, Wentworth M, McAinsh MR, Gray JE, Hetherington AM (2004) The effects of manipulating phospholipase C on guard cell ABA-signalling. J Exp Bot 55:199–204

    Article  PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Meijer HJ (2001) Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett 498:172–178

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, van Himbergen JAJ, ter Riet B, Braun FJ, Irvine RF, van den Ende H, Musgrave A (1998) Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan. Planta 207:133–145

    Article  CAS  Google Scholar 

  • Munnik T, Meijer HJG, ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    Article  PubMed  CAS  Google Scholar 

  • Owen JD (1976) The determination of the stability constant for calcium-EGTA. Biochim Biophys Acta 451:321–325

    PubMed  CAS  Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20:79–83

    Article  CAS  Google Scholar 

  • Quan RD, Shang M, Zhang H, Zhao YX, Zhang JR (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166:141–149

    Article  CAS  Google Scholar 

  • Repp A, Mikami K, Mittmann F, Hartmann E (2004) Phosphoinositide specific phospholipase C is involved in cytokinin and gravity responses in the moss Physcomitrella patens. Plant J 40:250–259

    Article  PubMed  CAS  Google Scholar 

  • Ruelland E, Cantrel C, Gawer M, Kader J-C, Zachowski A (2002) Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cell. Plant Physiol 130:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp 27–99, 518–552

  • Sanchez J-P, Chua N-H (2001) Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101:1892–1897

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–270

    Article  CAS  Google Scholar 

  • Shou HX, Bordallo P, Fan JB, Yeakley JM, Bibikova M, Sheen J, Wang K (2004) Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101:3298–3303

    Article  PubMed  CAS  Google Scholar 

  • Smith PK, Krohn R, Hermanson GT, Mallia AK, Gartner FM, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  • Smolenska-Sym G, Kacperska A (1996) Inositol 1,4,5-trisphosphate formation in leaves of winter oilseed rape plants in response to freezing, tissue water potential and abscisic acid. Physiol Plant 96:692–698

    Article  CAS  Google Scholar 

  • Staxén I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96:1779–1784

    Article  PubMed  Google Scholar 

  • Stevenson JM, Perera IY, Heilmann II, Persson S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5:252–258

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Stress physiology. In: Plant physiology, 2nd edn. Sinauer Associates Inc, Sunderland, pp 725–757

  • Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K (2001) Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol 42: 214–222

    Article  PubMed  CAS  Google Scholar 

  • Tate BF, Eric Schaller G, Sussman MR, Crain RC (1989) Characterization of a polyphosphoinositide phospholipase C from the plasma membrane of Avena sativa. Plant Physiol 91:1275–1279

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, Thorn P (2001) Calcium signalling: IP3 rises again and again. Curr Biol 11:R352–R355

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  PubMed  CAS  Google Scholar 

  • Troll W, Cannan RK (1953) A modified photometric ninhydrin method for the analysis of amino and imino acids. J Biol Chem 200:803–811

    PubMed  CAS  Google Scholar 

  • Vergnolle C, Vaultier M-N, Taconnat L, Renou J-P, Kader J-C, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipases C and D pathways determines the response of two distinct clusters of genes in Arabidopsis suspension cell. Plant Physiol 139:1217–1233

    Article  PubMed  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by the anthrone. Biochem J 57:508–514

    PubMed  CAS  Google Scholar 

  • Zhai SM, Sui ZH, Yang AF, Zhang JR (2005) Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnol Lett 27:799–804

    Article  PubMed  CAS  Google Scholar 

  • Zonia L, Munnik T (2004) Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol 134:813–823

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2006AA10A107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Ren Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CR., Yang, AF., Yue, GD. et al. Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize. Planta 227, 1127–1140 (2008). https://doi.org/10.1007/s00425-007-0686-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0686-9

Keywords

Navigation