Skip to main content
Log in

Allele mining and haplotype discovery in barley candidate genes for drought tolerance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In the present study, allele mining was conducted on a panel of drought related candidate genes in a set of 96 barley genotypes using EcoTILLING, which is a variant of the targeting induced local lesions in genomes (TILLING) technology. Analyzing approximately 1.5 million basepairs in barley a total number of 94 verified unique haplotypes were identified in 18 amplicons designed for 9 genes. Overall, 185 single nucleotide polymorphisms (SNPs) and 46 insertions/deletions (INDELs) were detected with a mean of 1SNP/92 bp and 1INDEL/372 bp genomic sequence. Based on overlapping haplotype sequences, markers were developed for four candidate genes (HvARH1, HvSRG6, HvDRF1, HVA1), which allows distinguishing between the main haplotypes showing either differences in amino acid sequence or which have larger INDELs in the promoter region. As “proof of concept”, the HvARH1 and HvSRG6 haplotypes were tested for the level of abscisic acid-induced gene expression in subsets of genotypes belonging to different haplotype categories. An integrated database was developed to contain information about the genes, genotypes, and haplotypes analyzed in this study. The database supplies profound information about the natural variation in the tested drought related candidate genes providing a significant asset for further mapping studies dealing with this highly polygenic trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427

    Article  CAS  Google Scholar 

  • Barkley NA, Wang ML, Gillaspie AG, Dean RE, Pederson GA, Jenkins TM (2008) Discovering and verifying DNA polymorphisms in a mung bean [V. radiata (L.) R. Wilczek] collection by EcoTILLING and sequencing. BMC Res Notes 1:28

    Article  PubMed  Google Scholar 

  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance? Trends Plant Sci 6:284–286

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Engelhardt K, Roncarati R, Schneider K, Rotter M, Salamini F (1991) An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J 10(5):1037–1043

    PubMed  CAS  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  PubMed  CAS  Google Scholar 

  • Bundock PC, Henry RJ (2004) Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theor Appl Genet 109:543–551

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Chomcyznski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 26:480–484

    Article  Google Scholar 

  • Comai L, Young K, Reynolds SH, Codomo C, Enns L, Johnson J, Burtner C, Henikoff JG, Greene EA, Till BJ, Henikoff S (2004) Efficient discovery of nucleotide polymorphisms in populations by ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Cronin JK, Bundock PC, Henry RJ, Nevo E (2007) Adaptive climatic molecular evolution in wild barley at the Isa defense locus. Proc Natl Acad Sci USA 104:2773–2778

    Article  PubMed  CAS  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55:585–594

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QCB (2006) Use of EcoTILLING as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney KR, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot. doi:10.1093/jxb/erp194

  • Hideg É, Nagy T, Oberschall A, Dudits D, Vass I (2003) Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (280–320 nm) stresses. Plant Cell Environ 26:513–522

    Article  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Igartua E, Gracia MP, Lasa JM, Medina B, Molina-Cano JL, Montoya JL, Romagosa I (1998a) The Spanish barley core collection. Genet Resour Crop Evol 45:475–482

    Article  Google Scholar 

  • Igartua E, Gracia MP, Lasa JM, Medina B, Molina-Cano JL, Montoya JL, Romagosa I (1998b) The Spanish barley core collection. J Hered 90:328–329

    Google Scholar 

  • Jinyou D, Xiaoyang C, Wei L, Qiong G (2004) Osmoregulation mechanism of drought stress and genetic engineering strategies for improving drought resistance in plants. For Stud China 6:56–62

    Article  Google Scholar 

  • Kilian B, Ozkan H, Kohl J, von Haeseler A, Barale F et al (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genomics 276:230–241

    Article  PubMed  CAS  Google Scholar 

  • Knüpffer H (1988) The European Barley Database of the ECP/GR: an introduction. Kulturpflanze 36:135–162

    Article  Google Scholar 

  • Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135:145–151

    Article  PubMed  CAS  Google Scholar 

  • Lababidi S, Mejlhede N, Rasmussen SK, Backes G, Al-Said W, Baum M, Jahoor A (2009) Identification of barley mutants in the cultivar ‘Lux’ at the Dhn loci through TILLING. Plant Breed 128:332–336. doi:10.1111/j.1439-0523.2009.01640.x

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Maestri E, Malcevschi A, Massari A, Marmiroli N (2002) Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs). Mol Genet Genomics 267:186–201

    Article  PubMed  CAS  Google Scholar 

  • Malatrasi M, Close TJ, Marmiroli M (2002) Identification and mapping of a putative stress response regulator gene in barley. Plant Mol Biol 50:143–152

    Article  PubMed  CAS  Google Scholar 

  • Marzin S, Mihaly R, Pauk J, Schweizer P (2008) A transient assay system for the assessment of cell autonomous gene function in dehydration-stressed barley. J Exp Bot 59:3359–3369

    Article  PubMed  CAS  Google Scholar 

  • Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • McCarthy C (1998) Chromas 1.45. Technelysium Pty. Ltd., Helensvale

    Google Scholar 

  • Mejlhede N, Kyjovska Z, Backes G, Burhenne K, Rasmussen SK, Jahoor A (2006) EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes mlo and Mla of barley. Plant Breed 125:461–467

    Article  CAS  Google Scholar 

  • Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102:2442–2447

    Article  PubMed  CAS  Google Scholar 

  • Mundree SG, Whittaker A, Thomson JA, Farrant JM (2000) An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker. Planta 211:693–700

    Article  PubMed  CAS  Google Scholar 

  • Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamón ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA, Bendahmane A (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 21:7–34

    Google Scholar 

  • Oberschall A, Deák M, Török K, Sass L, Vass I, Kovács I, Fehér A, Dudits D, Horváth GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stress. Plant J 24:437–446

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG, Seo HS, Paek NC (2006) Rapid upregulation of Dehyrin3 and Dehydrin4 in response to dehydration is a characteristic of drought tolerant genotypes in barley. J Plant Biol 49:455–462

    Article  CAS  Google Scholar 

  • Rodriguez EM, Svensson JT, Malatrasi M, Choi DW, Close TJ (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110:852–858

    Article  PubMed  CAS  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    Article  CAS  Google Scholar 

  • Roncarati R, Salamini F, Bartels D (1995) An aldose reductase homologous gene from barley: regulation and function. Plant J 7:809–822

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398

    Article  PubMed  CAS  Google Scholar 

  • Shi HZ, Lee BH, Wu SJ, Zhu JK (2002) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Silvar C, Casas AM, Kopahnke D, Habekuß A, Schweizer G, Gracia MP, Lasa JM, Ciudad FJ, Molina-Cano J, Igartua E, Ordon F (2010) Screening the Spanish Barley Core Collection for disease resistance. Plant Breed 129(8):45–52

    Article  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  PubMed  CAS  Google Scholar 

  • Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K et al (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067

    Article  PubMed  CAS  Google Scholar 

  • Talamè V, Ozturk NZ, Bohnert HJ, Tuberosa R (2007) Barley transcript profiles under dehydration shock and drought stress treatments treatments: a comparative analysis. J Exp Bot 58:229–240

    Article  PubMed  Google Scholar 

  • Törjék O, Berger D, Meyer R, Müssig C, Schmid K, Rosleff-Sörensen T, Weisshaar B, Mitchell-Olds T, Altmann T (2003) Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis. Plant J 36:122–140

    Article  PubMed  Google Scholar 

  • Törjék O, Witucka-Wall H, Meyer R, von Korff M, Kusterer B, Rautengarten C, Altmann T (2006) Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor Appl Genet 113:1551–1561

    Article  PubMed  Google Scholar 

  • Törjék O, Meyer RC, Zehnsdorf M, Teltow M, Strompen G, Witucka-Wall H, Blacha A, Altmann T (2008) Construction and analysis of 2 reciprocal Arabidopsis introgression line populations. J Hered 99:396–406

    Article  PubMed  Google Scholar 

  • van Berloo R (1999) GGT: software for the display of graphical genotypes

  • von Korff M, Grando S, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci (QTL) associated with agronomic performance of barley under drought. Theor Appl Genet 117:653–669

    Article  Google Scholar 

  • von Korff M, Radovic S, Choumane W, Stamati K, Udupa SM, Grando S, Ceccarelli S, Mackay I, Powell W, Baum M, Morgante M (2009) Asymmetric allele-specific expression in relation to developmental variation and drought stress in barley hybrids. Plant J 59(1):14–26. doi:10.1111/j.1365-313X.2009.03848.x

    Article  Google Scholar 

  • Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ (2009) Isolation and functional characterization of HvDREB1—a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res 122:121–130

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the OMFB (Országos Műszaki Fejlesztési Bizottság) 445733—00514/2007 NAP BIO and OTKA (Országos Tudományos Kutatási Alapprogramok) 72366. We are grateful to Krisztina G. Talpas for excellent technical assistance. We also thank Ernő Homolya and Gábor Németh for help in the initialization of the website. We thank Georg Strompen (University of Potsdam, Germany) for Cel1 aliquots.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Cseri.

Additional information

András Cseri and Mátyás Cserháti are contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cseri, A., Cserháti, M., von Korff, M. et al. Allele mining and haplotype discovery in barley candidate genes for drought tolerance. Euphytica 181, 341–356 (2011). https://doi.org/10.1007/s10681-011-0445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0445-7

Keywords

Navigation