Skip to main content
Log in

Meta-analysis of QTL associated with tolerance to abiotic stresses in barley

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A meta-analysis of quantitative trait loci (QTL) associated with tolerance to abiotic stresses in barley was carried out using results from 35 different experiments. “MetaQTL” software was used to project QTL positions on a reference map. Three hundred and thirty-seven QTL for traits associated with tolerance to abiotic stresses were included in this analysis which identified 79 metaQTL (MQTL) including 26 for drought, 11 for low temperature, 22 for salinity, 17 for water-logging, and 3 for mineral toxicity and deficiency. The distribution of MQTL was similar to that of the initial QTL. Many of these MQTL were located on chromosomes 2H (mainly for water-logging and drought) and 5H (mainly for salinity and low temperature). It inferred that chromosomes 2H and 5H were important for researches on barley abiotic tolerance, and the genes associated with abiotic stresses were concentrated relatively. As expected from trait correlations, 22.8 % of these MQTL displayed overlapping CIs. These overlapping regions were mainly on chromosomes 1H, 2H and 4H. The results indicated that the tolerance to diverse abiotic stresses were associated with each other in barley. Additionally, 67 candidate genes responsive to abiotic stresses were co-located with the abiotic-stress MQTL. Of them, a total of 55 had different conserved motifs. It inferred that the tolerance to abiotic stresses was contributed by multi-genes with diverse functions, though there might be some important genes associated with the tolerance to abiotic stresses in barley. Additionally, of these candidate genes, scsnp02622, scsnp01644 and scsnp19641 could be better for further studies of abiotic stresses tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait loci

MQTL:

Meta quantitative trait loci

MAS:

Marker-assisted selection

R2 :

The proportion of the phenotypic variance explained by the QTL

AIC:

Akaike information content

CI:

Confidence interval

DArT:

Diversity array technology

D-MQTL:

QTL for tolerance to drought stress

T-MQTL:

QTL for tolerance to low temperature stress

W-MQTL:

QTL for tolerance to water-logging stress

M-MQTL:

QTL for tolerance to mineral toxicity and deficiency

S-MQTL:

QTL for tolerance to salinity stress

References

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) Biomercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Arcade A, Labourdette A, Chardon F, Falque M, Charcosset A, Joets J (2005) BioMercator version 2.1. http://generationcp.org

  • Ballini E, Morel J, Droc G, Price A, Courtois B, Notteghem J, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provided new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    Article  PubMed  CAS  Google Scholar 

  • Barger TW, Locy RD (2005) Review: abiotic stress sensing and GABA response in plants. J Ala Acad Sci 76:164–181

    Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × ‘H. spontaneum 41-1’. Theor Appl Genet 107:1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson BO (1992) Barley genetics. Trends Genet 8:3–5

    Article  PubMed  CAS  Google Scholar 

  • Bray E, Bailey-Serres J, Weretilnyik E (2000) Biochemistry and molecular biology of plants. Wiley, New York, pp 1158–1203

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Krugman T, Fahima T, Chen K, Hu Y, Röder M, Nevo E, Korol A (2010) Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C Koch. Genet Resour Crop Evol 57:85–99

    Article  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR (2010) Abiotic stress and plant responses from the whole vine to the genes. Aust J Grape Wine Res 16:86–93

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163–176

    Article  PubMed  Google Scholar 

  • Dadshani SAW, Weidner A, Buck-Sorlin GH, Börner A, Asch F (2004) QTL analysis for salt tolerance in barley. Humboldt University, Berlin

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  PubMed  CAS  Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:1417–1425

    Article  PubMed  CAS  Google Scholar 

  • Ellis RP, Forster BP, Gordon DC, Handley LL, Keith RP, Lawrence P, Meyer R, Powell W, Robinson D, Scrimgeour CM, Young G, Thomas WTB (2002) Phenotype/genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot 53:1163–1176

    Article  PubMed  CAS  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Tóth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    Article  PubMed  CAS  Google Scholar 

  • Glass GV (1976) Primary, secondary, and meta-analysis of research. Educ Res 5:3–8

    Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Guo P, Baum M, Varshney RK, Graner A, Grando S, Ceccarelli S (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163:203–214

    Article  CAS  Google Scholar 

  • Gyenis L, Yun JS, Smith KP, Steffenson BJ, Bossolini E, Sanguineti MC, Muehlbauer GJ (2007) Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50:714–723

    Article  PubMed  CAS  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheat and barley. Science 153:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, Orlando

    Google Scholar 

  • Huang Y (2006) Studies on salt tolerance and QTL mapping for some related traits in barley. 0716001, Zhejiang University

  • Huynh BL, Pallotta M, Choi EY, Garnett T, Graham R, Stangoulis J (2009) Quantitative trait loci for reducing sugar concentration in the barley root tip under boron toxicity. The Proceedings of the International Plant (http://www.escholarship.org/uc/item/7d49s8vk#page-1)

  • Iwasa T, Takahashi H, Takeda K (1999) QTL mapping for water sensitivity in barley seeds. Bull Res Inst Bioresour (Okayama University) 6:21–28

    Google Scholar 

  • Jefferies SP, Barr AR, Karakousis A, Kretschmer JM, Manning S, Chalmers KJ, Nelson JC, Islam AKMR, Langridge P (1999) Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 98:1293–1303

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Cameron-Schiller K, Gatzke N, Yul-Sung D, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Li H, Vaillancourt R, Mendham N, Zhou M (2008) Comparative mapping of quantitative trait loci associated with water-logging tolerance in barley (Hordeum vulgare L.). BMC Genomics 9:401–411

    Article  PubMed  Google Scholar 

  • Löffler M, Schön C, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Article  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272

    Article  Google Scholar 

  • Mao SL, Wei YM, Cao WG, Lan XJ, Yu M, Chen ZM, Chen GY, Zheng YL (2010) Confirmation of the relationship between plant height nd Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356

    Article  Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  PubMed  CAS  Google Scholar 

  • Mickelson S, See D, Meyer DF, Garner PJ, Foster RC, Blake KT, Fischer MA (2003) Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J Exp Bot 383:801–812

    Article  Google Scholar 

  • Miles CM, Wayne M (2008) Quantitative trait locus (QTL) analysis. Nat Educ 1 (1) http://www.nature.com/scitable/topicpage/Quantitative-Trait-Locus-QTL-Analysis-53904

  • Mohammadi M, Taleei A, Zeinali H, Naghavi RM, Ceccarelli S, Grando S, Baum M (2005) QTL analysis for phenologic traits in doubled haploid population of barley. Int J Agri Bio 7:820–823

    Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    Article  PubMed  CAS  Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedö Z (1994) Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900–910

    Article  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Linoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–736

    Article  PubMed  CAS  Google Scholar 

  • Peighambari SA, Samadi BY, Nabipour A, Charmet G, Sarrafi A (2005) QTL analysis for agronomic traits in a barley doubled haploids population grown in Iran. Plant Sci 169:1008–1013

    Article  CAS  Google Scholar 

  • Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor Appl Gent 109:1267–1274

    Article  CAS  Google Scholar 

  • Rosenberg MS, Garrett KA, Su Z, Bowden RL (2004) Meta-analysis in plant pathology: synthesizing research results. Phytopathology 94:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1998) Heat-shock proteins and cross-tolerance in plants. Physiol Planta 103:437–441

    Article  CAS  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  PubMed  CAS  Google Scholar 

  • Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, Langridge P, Collins NC (2010) HvNax3: a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics 10:277–291

    Article  PubMed  CAS  Google Scholar 

  • Siahsar BA, Narouei M (2010) Mapping QTLs of physiological traits associated with salt tolerance in ‘Steptoe’ × ‘Morex’ doubled haploid lines of barley at seedling stage. J Food Agri Environ 8:751–759

    Google Scholar 

  • Skirycz A, Inze D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney KR, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Teulat B, Monneveux P, Wery J, Birries C, Souyris I, Charrier A, This D (1997) Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol 137:99–107

    Article  Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698

    Article  CAS  Google Scholar 

  • Teulat B, Borries C, This D (2001a) New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103:161–170

    Article  CAS  Google Scholar 

  • Teulat B, Merah O, Souyris I, This D (2001b) QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787

    Article  CAS  Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    PubMed  CAS  Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B, Ben Salem M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188

    Google Scholar 

  • Vargas M, Van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL 9 environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hort 560:285–292

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminum tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206–227

    Article  PubMed  Google Scholar 

  • Xiang K, Zhang ZM, Reid LM, Zhu XY, Yuan GS, Pan GT (2010) A meta-analysis of QTL associated with ear rot resistance in maize. Maydica 55:281–290

    Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8569–8588

    Google Scholar 

  • Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169:187–196

    Article  Google Scholar 

  • Xue D, ZhouM, Zhang X, Chen S, Wei K (2010) Identification of QTLs for yield and yield components of barley under different growth conditions. J Zhejiang Univ-Sci B 11:169–176

  • Zhang F, Chen G, Huang Q, Orion O, Krugman T, Fahima T, Korol AB, Nevo E, Gutterman Y (2005) Genetic basis of barley caryopsis dormancy and seedling desiccation tolerance at the germination stage. Theor Appl Genet 110:445–453

    Article  PubMed  CAS  Google Scholar 

  • Zhou M (2010) Accurate phenotyping reveals better QTL for waterlogging tolerance in barley. Plant breed 130:203–208

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program 2010CB134400), and the Program for Innovative Research Team in Sichuan (2011JTD0015 and 11TD005), and Excellent PhD. Program of Sichuan Agricultural University (YBPY1004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WT., Liu, C., Liu, YX. et al. Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica 189, 31–49 (2013). https://doi.org/10.1007/s10681-012-0683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0683-3

Keywords

Navigation