Skip to main content
Log in

Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na+ to K+ ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal S, Kumar A, Singh PK, Singh A (2011) Responses of some genotypes of finger millet (Eleusine coracana Gaertn.) for their salt tolerance. Int J Curr Res 3:045–050

    Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33:151–153

    CAS  Google Scholar 

  • Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Baker J, Van dennSteele C, Dure L III (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–291

    CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bastola DR, Pethe VV, Winicov I (1998) Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol 38:1123–1135

    CAS  PubMed  Google Scholar 

  • Bernstein N, Silk WK, Läuchli A (1993) Growth and development of sorghum leaves under conditions of NaCl stress. Planta 191:433–439

    CAS  Google Scholar 

  • Bishop GJ, Yokota T (2001) Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol 42:114–120

    CAS  PubMed  Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171(2):1087–1092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bressan RA, Hasegawa PM, Pardo JM (1998) Plants use calcium to resolve salt stress. Trends Plant Sci 3:411–412

    Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    CAS  PubMed  Google Scholar 

  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt M-M, Klein PE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    CAS  PubMed  Google Scholar 

  • Cao ZH, Zhang SZ, Wang RK, Zhang RF, Hao YJ (2013) Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. PLoS One 8:e69955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chartzoulakis K, Loupassaki M, Bertaki M, Androulakis I (2002) Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Sci Hortic 96:235–247

    CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) BRASSINOSTEROIDS: essential Regulators of Plant Growth and Development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    CAS  PubMed  Google Scholar 

  • Cotsaftis O, Plett D, Johnson AA, Walia H, Wilson C, Ismail AM, Close TJ, Tester M, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol Plant 4:25–41

    CAS  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    CAS  PubMed  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Domenico S, Tsesmetzis N, Di Sansebastiano GP, Hughes RK, Casey R, Santino A (2007) Subcellular localisation of Medicago truncatula 9/13-hydroperoxide lyase reveals a new localisation pattern and activation mechanism for CYP74C enzymes. BMC Plant Biol 7:58

    PubMed Central  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Google Scholar 

  • Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55:585–594

    CAS  PubMed  Google Scholar 

  • Gao Z, He X, Zhao B, Zhou C, Liang Y, Ge R, Shen Y, Huang Z (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775

    CAS  PubMed  Google Scholar 

  • Garg AK, Kim J-K, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21:69–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goday A, Jensen AB, Culianez-Macia FA, Albà MM, Figueras M, Serratosa J, Torrent M, Pagès M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grover A, Singh A, Blumwald E (2011) Transgenic strategies toward the development of salt-tolerant plants. In: Agricultural salinity assessment and management. ASCE, pp 235–274

  • Hasegawa P, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Henrissat B, Davies G (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    PubMed  Google Scholar 

  • Hopf H, Gruber G, Zinn A, Kandler O (1984) Physiology and biosynthesis of lychnose in Cerastium arvense. Planta 162:283–288

    CAS  PubMed  Google Scholar 

  • Hsu S, Hsu Y, Kao C (2003) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plant 46:73–78

    CAS  Google Scholar 

  • Hu W, Yuan Q, Wang Y, Cai R, Deng X, Wang J, Zhou S, Chen M, Chen L, Huang C (2012) Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol 53:2127–2141

    CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    CAS  PubMed  Google Scholar 

  • Jain S, Nainawatee H, Jain R, Chowdhury J (1991) Proline status of genetically stable salt-tolerant Brassica juncea L. somaclones and their parent cv. Prakash. Plant Cell Rep 9:684–687

    CAS  PubMed  Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    PubMed Central  PubMed  Google Scholar 

  • Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 5:792–795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanai M, Higuchi K, Hagihara T, Konishi T, Ishii T, Fujita N, Nakamura Y, Maeda Y, Yoshiba M, Tadano T (2007) Common reed produces starch granules at the shoot base in response to salt stress. New Phytol 176:572–580

    CAS  PubMed  Google Scholar 

  • Kang D, Seo Y, Lee J, Ishii R, Kim K, Shin D, Park S, Jang S, Lee I (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keskin BC, Sarikaya AT, Yüksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Kim DY, Jin JY, Alejandro S, Martinoia E, Lee Y (2010) Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant 139:170–180

    CAS  PubMed  Google Scholar 

  • Kishor PK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kizis D, Lumbreras V, Pagès M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    CAS  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kogenaru S, Yan Q, Guo Y, Wang N (2012) RNA-seq and microarray complement each other in transcriptome profiling. BMC Genomics 13:629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumari S, nee Sabharwal VP, Kushwaha HR, Sopory SK, Singla Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomics 9:109–123

    CAS  PubMed  Google Scholar 

  • Lambers H, Chapin F III, Pons T (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Lehle L, Tanner W (1973) The function of myo-Inositol in the biosynthesis of raffinose. Eur J Biochem 38:103–110

    CAS  PubMed  Google Scholar 

  • Li B, Sang T, He L, Sun J, Li J, Guo S (2013) Exogenous spermidine inhibits ethylene production in leaves of cucumber seedlings under NaCl stress. J Am Soc Hortic Sci 138:108–113

    CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki Y, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression respectively in Arabidopsis. Plant Cell 10:1391–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011) Cloning of a vacuolar H+-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in arabidopsis. J Integr Plant Biol 53:731–742

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Lokhande VH, Nikam TD, Penna S (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 102:17–25

    Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCue KF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362

    CAS  Google Scholar 

  • Mehta PA, Sivaprakash K, Parani M, Venkataraman G, Parida AK (2005) Generation and analysis of expressed sequence tags from the salt-tolerant mangrove species Avicennia marina (Forsk) Vierh. Theor Appl Genet 110:416–424

    CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, Reddy MK (2007) Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol Biol 64:713–732

    CAS  PubMed  Google Scholar 

  • Miyahara K, Mizunuma M, Hirata D, Tsuchiya E, Miyakawa T (1996) The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance. FEBS Lett 399:317–320

    CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Murakeözy ÉP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401

    PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58:507–520

    CAS  PubMed  Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 48:551–573

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    CAS  PubMed  Google Scholar 

  • Pattanagul W, Thitisaksakul M (2008) Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J Exp Biol 46:736–742

    CAS  PubMed  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    CAS  Google Scholar 

  • Petrusa L, Winicov I (1997) Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 35:303–310

    CAS  Google Scholar 

  • Puranik S, Jha S, Srivastava PS, Sreenivasulu N, Prasad M (2011) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168:280–287

    CAS  PubMed  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Nataraja KN, Reddy MK, Mysore KS, Udayakumar M (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS One 7:e40397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ratajczak R, Richter J, Lüttge U (1994) Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crystallinum to salt stress, C3–CAM transition and plant age. Plant Cell Environ 17:1101–1112

    CAS  Google Scholar 

  • Sairam R, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    CAS  PubMed  Google Scholar 

  • Shailaja H, Thirumeni S (2007) Evaluation of salt-tolerance in finger millet (Eleusine coracana) genotypes at seedling stage. Indian J Agric Sci 77:672–674

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    CAS  PubMed  Google Scholar 

  • Siringam K, Juntawong N, Cha-um S, Boriboonkaset T, Kirdmanee C (2012) Salt tolerance enhancement in indica rice (Oryza sativa L. spp. indica) seedlings using exogenous sucrose supplementation. J Plant Mol Biol Omics 5:52–59

    CAS  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    CAS  Google Scholar 

  • Sudhir P, Murthy S (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    CAS  Google Scholar 

  • Szoke A, Miao G-H, Hong Z, Verma DPS (1992) Subcellular location of δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol 99:1642–1649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6:1337–1348

    Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Hou B (2009) Glycosyltransferases: key players involved in the modification of plant secondary metabolites. Front Biol China 4(1):39–46

    CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    CAS  PubMed  Google Scholar 

  • Ward JA, Ponnala L, Weber CA (2012) Strategies for transcriptome analysis in nonmodel plants. Am J Bot 99:267–276

    CAS  PubMed  Google Scholar 

  • Weimberg R, Lerner H, Poljakoff-Mayber A (1984) Changes in growth and water-soluble solute concentrations in Sorghum bicolor stressed with sodium and potassium salts. Physiol Plant 62:472–480

    CAS  Google Scholar 

  • Winicov I (2000) Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210:416–422

    CAS  PubMed  Google Scholar 

  • Winkel Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    CAS  PubMed  Google Scholar 

  • Yang WJ, Rich PJ, Axtell JD, Wood KV, Bonham CC, Ejeta G, Mickelbart MV, Rhodes D (2003) Genotypic variation for glycinebetaine in sorghum. Crop Sci 43:162–169

    CAS  Google Scholar 

  • Yemm E, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng L (2004) Response and correlated response to salt tolerance selection in rice by yield parameters. Cereal Res Commun 32:477–484

    Google Scholar 

  • Zepeda-Jazo I, Shabala S, Chen Z, Pottosin II (2008) Na+–K+ transport in roots under salt stress. Plant Signal Behav 3:401–403

    PubMed Central  PubMed  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Zhen J, Li Z, Kang D, Yang Y, Kong J, Hua J (2011) Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Mol Biol Rep 29:626–637

    Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

  • Ziemann M, Kamboj A, Hove RM, Loveridge S, El-Osta A, Bhave M (2013) Analysis of the barley leaf transcriptome under salinity stress using mRNA-Seq. Acta Physiol Plant 35:1915–1924

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support of Department of Biotechnology, Government of India, New Delhi (Grant Number BT/PR-10482/AGR/02/564/2008) is greatly acknowledged. The authors are also grateful to CLC Genomics Workbench support team for their help in analyzing the transcriptome data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raveendran Muthurajan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, H., Jagadeeshselvam, N., Valarmathi, R. et al. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol Biol 85, 485–503 (2014). https://doi.org/10.1007/s11103-014-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0199-4

Keywords

Navigation