Skip to main content
Log in

Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In previous works, we have established a correlation between antioxidant system response and tolerance to drought, osmotic stress and photooxidative stress of different wheat cultivars with contrasting drought tolerance. In the present work, a protocol to obtain and transform wheat protoplasts was established. Transgenic protoplasts with Manganese Superoxide Dismutase (Mn-SOD) (E.C.: 1.15.1.1) and Glutathione Reductase (GR) (E.C.: 1.6.4.2) overexpression in chloroplasts were obtained, and their responses to photooxidative stress were characterized. Protoplasts with Mn-SOD or GR overexpression, showed different responses and tolerance to photooxidative stress. Protoplasts with Mn-SOD overexpression showed lower levels of oxidative damage, higher level of endogenous hydrogen peroxide and a great induction of total SOD and GR activities during photooxidative treatments. In protoplasts with GR overexpression the oxidative damage provoked by the photooxidative treatment was similar to control protoplasts, the GSH content and GSH/GSH + GSSG ratio were higher than control and Mn-SOD transformed protoplast, and total SOD and GR activities were not induced. Our results suggest that the differential responses and tolerance to photooxidative stress given by Mn-SOD or GR overexpression, also depend on the effects of these enzyme activities over the cellular redox state balance, which modulate the responses to photooxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide

MDA:

Malondialdehyde

H2O2 :

Hydrogen peroxide

O2 :

Superoxide radical

PEG:

Polyethylene glycol

References

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1991) Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for Glutathione reductase from Escherichia coli. Plant Cell Physiol 32:691–697

    CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhance tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–135

    CAS  Google Scholar 

  • Arisi MC, Cornic G, Jouanin L, Foyer C (1998) Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures of following exposure to prooxidant herbicide methyl viologen. Plant Physiol 117:565–574

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen, dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Stone JM, Head JE, Kovtum Y, Yorgey P, Sheen J, Ausbel FM (2000) Fumoisin B1-induced cell death in Arabidopsis protoplasts require jasmonate, ethylene and salycilate-dependent signaling pathways. Plant Cell 12:1823–1835

    Article  PubMed  CAS  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux P (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Alliote T, Van den Bulcke M, Bauw G, Vanderkerckhove J, Van Montagú M, Inzé D (1989) A plant mitochondrial preprotein is efficiently imported and correctly processed by yeast mitochondria. Proc Natl Acad Sci USA 86:3237–3241

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, DeRycke R, Botterman J, Sybesma C, Van Montagú M, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    PubMed  CAS  Google Scholar 

  • Bowler C, Van Montagú M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Broadbent GP, Creissen GP, Kular B, Wellburn AR, Moullineaux PM (1995) Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J 8:247–255

    Article  CAS  Google Scholar 

  • Creissen G, Reynolds H, Xue Y, Moullineaux P (1995) Simultaneuos targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8:167–175

    Article  PubMed  CAS  Google Scholar 

  • Creissen G, Firmin J, Fryer M, Kulan B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999) Elevated glutathione biosynthesis capacity in the chloroplasts of transgenic tobacco plants. Plant Cell 11:1277–1291

    Article  PubMed  CAS  Google Scholar 

  • Datta SK (1995) Polyethylene-glycol- mediated direct gene transfer to Indica rice protoplast and regeneration of transgenic plants. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer Verlag, Berlin Heidelberg, Germany, pp 66–74

  • Foyer C, Halliwell B (1976) The presence of glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer C, Noctor G (2005a) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer C, Noctor G (2005b) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    Article  PubMed  CAS  Google Scholar 

  • Foyer C, Souriau N, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination de glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Guibault GG, Brignac PJ, Juneau M (1968) New substrates for the fluorometric determination of oxidative enzymes. Anal Chem 40:1256–1263

    Article  Google Scholar 

  • He DG, Yang YM, Scott KJ (1992) Plant regeneration from protoplasts of wheat (Triticum aestivum cv Hartog). Plant Cell Rep 11:16–19

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoprotection in isolated chloroplasts I kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5. doi:10.1186/1746–4811-1-5, http://www.plantmethods.com/content/1/1/5

  • Karpinska B, Wingsle G, Karpinski S (2000) Antagonistic effect of hydrogen peroxide and glutathione on acclimation to excess excitation energy in Arabidopsis. IUBMB Life 50:21–26

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Winsgle G, Mullineaux PM (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  PubMed  CAS  Google Scholar 

  • Kingston-Smith AH, Foyer C (2000) Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J Exp Bot 51:123–130

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2003) Elevated chloroplastic glutathione reductase activities decrease chilling induced photoinhibition by increasing rates of photochemistry but not thermal energy dissipation, in transgenic cotton. Func Plant Biol 30:101–110

    Article  CAS  Google Scholar 

  • Lascano HR, Antonicelli GE, Luna CM, Melchiorre M, Gomez LD, Racca RW, Trippi VS, Casano LM (2001) Antioxidative system response of different wheat cultivars under drought: field and in vitro studies. Aust J Plant Physiol 28:1–9

    Google Scholar 

  • Lascano HR, Melchiorre M, Luna CM, Trippi VS (2003) Effect of photooxidative stress in two wheat cultivars with differential tolerance to water stress. Plant Sci 164:841–848

    Article  CAS  Google Scholar 

  • Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martinsuo P, Pursiheimo S, Aro EM, Rintamaki E (2003) Dithiol oxidant and disulfide reductant dynamically regulate the phosphorylation of light-harvesting complex II proteins in thylakoid membranes. Plant Physiol 133:37–46

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inzé D, D’Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1438

    Article  PubMed  CAS  Google Scholar 

  • Melchiorre M (2002) Superoxide dismutase overexpression in wheat: tolerance against abiotic stress. PhD thesis, National University of Córdoba, Argentina

  • Melchiorre M, Lascano HR, Trippi VS (2002) Transgenic wheat plants resistant to herbicide BASTA obtained by microprojectile bombardment. Biocell 26:217–223

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  PubMed  CAS  Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Scott AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–2354

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Perl-Treves R, Galli S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutases. Theor Appl Gen 85:568–576

    Article  CAS  Google Scholar 

  • Pitcher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA (1991) Overproduction of Petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol 97:452–455

    Article  PubMed  CAS  Google Scholar 

  • Rintamäki E, Salonen M, Suoranta UM, Calberg I, Anderson B, Aro EM (1997) Phosphorylation of light-harvesting complex II and photosystem II core protein shows different irradiance-dependent regulation in vivo. J Biol Chem 272:30476–30482

    Article  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez AA, Lascano HR, Bustos D, Taleisnik E (2007) Salinity-induced reductions in NADPH oxidase activity in the maize leaf blade elongation zone. J Plant Physiol 164:223–230

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta A, Webb RP, Holaday AS, Allen RD (1993a) Overexpression of superoxide dismutase protect plants from oxidative stress. Plant Physiol 103:1067–1073

    CAS  Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke JJ, Alen RD (1993b) Increase resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Slooten L, Capiau K, Van Montagu M, Sybesma C, Inzé D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco over expressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107:737–750

    PubMed  CAS  Google Scholar 

  • Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501–511

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem F, Slooten L, Stassart JM, Botterman J, Van Montagú M, Inzé D (1999) Overproduction of Arabidopsis thaliana Fe-SOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40:515–523

    PubMed  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inze D, Reupold-Popp P, Sandermann H Jr, Langebartels C (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Biotechnology 12:165–168

    Article  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inzé D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Alejandra Alamo for the English corrections. This work was supported by grants from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas-Argentina-PID 8170 and 0370). MM, RL, VST, are researchers from CONICET GR are INTA fellowshiper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ramiro Lascano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melchiorre, M., Robert, G., Trippi, V. et al. Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regul 57, 57–68 (2009). https://doi.org/10.1007/s10725-008-9322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-008-9322-3

Keywords

Navigation