Skip to main content
Log in

Genetic Improvement of Sugarcane for Drought and Salinity Stress Tolerance Using Arabidopsis Vacuolar Pyrophosphatase (AVP1) Gene

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane plant is a glycophyte, hence its growth and sucrose contents are severely affected by drought and salinity stresses. Bioengineering approaches offer a plausible and rapid solution to mitigate these losses. Therefore for genetic improvement of sugarcane against these stresses, the present study was conceived to transform Arabidopsis Vacuolar Pyrophosphatase (AVP1) gene—confers tolerance against drought and salinity—into sugarcane through Agrobacterium. For this purpose, highly regenerable apical buds of sugarcane variety CP77-400 were used as explants. EHA105 strain of Agrobacterium harboring pGreen0029 vector containing AVP1 gene driven under 35SCaMV promoter was employed for transformation. The key factors studied include application of acetosyringone, cefotaxime, kanamycin, and co-cultivation period for successful transformation. Maximum regeneration frequency of 77.5 % was achieved on MS media containing 1 mg/l BAP, 1 mg/l Kn, 1 mg/l GA3, 0.25 mg/l NAA, 50 μM acetosyringone, 500 mg/l cefotaxime, and 150 mg/l kanamycin on 3 days of co-cultivation. The results revealed that apical buds are distinctive viable tissues for sugarcane transformation and regeneration to produce a large number of CP77-400 transgenic plants in shorter period of time without intervening mosaics and chimeras. The AVP1 transcripts expression in transgenic lines at various levels was detected by RT-PCR. Longer and profuse root system was observed in transgenic plants in comparison with control plants. Concomitantly, only transgenic plants were able to withstand higher NaCl salt stress as well as scarcity of water thus, showing tolerance against salinity and drought stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAP:

Benzyl amino purine

MS:

Murashige and Skoog

SIM:

Shoot induction medium

RIM:

Root induction medium

LB:

Luria broth

NAA:

Naphthalene acetic acid

Kn:

Kinetin

GA3:

Gibberellic acid

References

  1. Agrwal, P. K., Agarwal, P., Reddy, M. K., & Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25, 1263–1274.

    Article  Google Scholar 

  2. FAO (Food, Agriculture Organization of the United Nations). (2004). FAO production year book. Rome: FAO.

    Google Scholar 

  3. Burke, E. J., Brown, S. J., & Christidis, N. (2006). Modeling the recent evolution of global drought and projections for the twenty first century with the Hadley centre climate model. Journal of Hydrometeorology, 7, 1113–1125.

    Article  Google Scholar 

  4. Asif, M. A., Zafar, Y., Iqbal, J., Iqbal, M. M., Rashid, U., Ali, G. M., et al. (2011). Enhanced Expression of AtNHX1, in Transgenic Groundnut (Arachis hypogaea L.) Improves Salt and Drought Tolerance. Molecular Biotechnology, 49, 250–256.

    Article  CAS  Google Scholar 

  5. Inman-Bamber, N. G., & Smith, D. M. (2005). Water relations in sugarcane and response to water deficits. Field Crops Research, 89, 185–202.

    Article  Google Scholar 

  6. Zhang, S. Z., Yang, B. P., Feng, C. L., Chen, R. K., Luo, J. P., Cai, W. W., et al. (2006). Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). Journal of Integrative Plant Biology, 48, 453–459.

    Article  CAS  Google Scholar 

  7. Azevedo, R. A., Carvalho, R. F., Cia, M. C., & Gratao, P. L. (2011). Sugarcane under pressure: An overview of biochemical and physiological studies of abiotic stress. Tropical Plant Biology, 4, 42–51.

    Article  CAS  Google Scholar 

  8. Plaut, Z., Meinzer, F., & Federman, E. (2000). Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant and Soil, 218, 59–69.

    Article  CAS  Google Scholar 

  9. Akhtar, S., Wahid, A., & Rasul, E. (2003). Emergence, growth and nutrient composition of sugarcane sprouts under NaCl salinity. Biologia Plantarum, 46, 113–116.

    Article  CAS  Google Scholar 

  10. Rozeff, N. (1995). Sugarcane and salinity—A review paper. Sugarcane, 5, 8–19.

    Google Scholar 

  11. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  12. Inman-Bamber, N. G., Bonnett, G. D., Spillman, M. F., Hewitt, M. L., & Jackson, J. (2008). Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Australian Journal of Agricultural Research, 59, 13–26.

    Article  CAS  Google Scholar 

  13. Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant community. Plant Cell and Environment, 33, 510–525.

    Article  CAS  Google Scholar 

  14. Suprasanna, P., Patade, V. Y., Desai, N. S., Devarumath, R. M., Kawar, P. G., Pagariya, M. C., et al. (2011). Biotechnological Developments in Sugarcane Improvement: An Overview. Sugar Technology, 13, 322–335.

    Article  CAS  Google Scholar 

  15. Butterfield, K., Irvine, E., Valdez, G. M., & Mirkov, E. (2002). Inheritance and segregation of virus and herbicide resistance transgenes in sugarcane. Theoretical and Applied Genetics., 104, 797–803.

    Article  CAS  Google Scholar 

  16. Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., et al. (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H+pump. Proceedings of the National Academy of Sciences of the United States of America, 98, 11444–11449.

    Article  CAS  Google Scholar 

  17. Gaxiola, R. A., Fink, G. R., & Hirschi, K. D. (2002). Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiology, 129, 967–973.

    Article  CAS  Google Scholar 

  18. Park, S., Li, J., Pittman, J. K., Berkowitz, G. A., Yang, H., Undurraga, S., et al. (2005). Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 18830–18835.

    Article  CAS  Google Scholar 

  19. Cheng, M., Lowe, B. A., Spencer, T. M., Ye, X. D., & Armstrong, C. L. (2004). Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular and Development Biology—Plant, 40, 31–45.

    Article  Google Scholar 

  20. Shrawat, A. K., & Lorz, H. (2006). Agrobacterium-mediated transformation of cereals: A promising approach crossing barriers. Plant Biotechnology Journal, 4, 575–603.

    Article  CAS  Google Scholar 

  21. Li, R. Y., & Qu, R. D. (2011). High throughput Agrobacterium-mediated switchgrass transformation. Biomass and Bioenergy, 35, 1046–1054.

    Article  CAS  Google Scholar 

  22. Murashige, T., & Skoog, K. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  23. Uzma Khan, M. R., Muhammad, A., Hussain, I., Shah, S. H., Kumar, T., Inam, S., et al. (2012). Rapid in vitro Multiplication of Sugarcane Elite Genotypes and Detection of Sugarcane Mosaic Virus through Two Steps RT-PCR. International Journal of Agriculture and Biology, 14, 870–878.

    Google Scholar 

  24. Rogers, S. O., & Bendich, A. J. (1988). Extraction of DNA from plant tissues. In S. B. Gelvin & R. A. Schilperoort (Eds.), Plant Molecular Biology Manual (pp. A1–A10). Boston: Kluwer Academic Publishers.

    Google Scholar 

  25. Khan, M. R., Khan, I., & Ali, G. M. (2012). MPF2-like MADS-box genes affecting SOC1 and MAF1 expression are implicated in flowering time control. Molecular Biotechnology, 12, 9540–9549.

    Google Scholar 

  26. Herrera-Estrella, L. (1999). Transgenic plants for tropical regions: Some considerations about their development and their transfer to the small farmer. Proceedings of the National Academy of Sciences of the United States of America, 96, 5978–5981.

    Article  CAS  Google Scholar 

  27. Serrano, R., & Gaxiola, R. (1994). Microbial models and salt stress tolerance in plants. Critical Reviews in Plant Sciences, 13, 121–138.

    Article  CAS  Google Scholar 

  28. Thomson, J. A. (2002). Research needs to improve agricultural productivity and food quality, with emphasis on biotechnology. Journal of Nutrition, 132, 3441S–3442S.

    CAS  Google Scholar 

  29. Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55, 2365–2384.

    Article  CAS  Google Scholar 

  30. Penna, S. (2003). Building stress tolerance through over-producing trehalose in transgenic plants. Trends in Plant Science, 8, 355–357.

    Article  CAS  Google Scholar 

  31. Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.

    Article  CAS  Google Scholar 

  32. Zhang, J. Z., Creelman, R. A., & Zhu, J.-K. (2004). From Laboratory to Field. Using Information from Arabidopsis to Engineer Salt, Cold, and Drought Tolerance in Crops. Plant Physiology, 135, 615–621.

    Article  CAS  Google Scholar 

  33. Joyce, P., Kuwahata, M., Turner, N., & Lakshmanan, P. (2010). Selection system and cocultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Reports, 29, 173–183.

    Article  CAS  Google Scholar 

  34. Gupta, V., Raghuvanshi, S., Gupta, A., Saini, N., Gaur, A., Khan, M. S., et al. (2010). The water-deficit stressand red-rot-related genes in sugarcane. Functional & Integrative Genomics, 10, 207–214.

    Article  CAS  Google Scholar 

  35. Trifonova, A., Madsen, S., & Olesen, A. (2001). Agrobacterium-mediated transgene delivery and integration into barley under arrange of In vitro culture conditions. Plant Sciences, 161, 871–880.

    Article  CAS  Google Scholar 

  36. Dong, J. Z., Yang, M. Z., Jia, S. R., & Chua, N. H. (1991). Transformation of melon (Cucumismelo L.) and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plants. Nature Biotechnology, 9, 858–863.

    Article  CAS  Google Scholar 

  37. Li, X. Q., Liu, C. N., Ritchie, S. W., Peng, J., Gelvin, S. B., & Hodges, T. K. (1992). Factors influencing Agrobacterium-mediated transient expression of Gus Ainrice. Plant Molecular Biology, 20, 1037–1048.

    Article  CAS  Google Scholar 

  38. Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P., Osório, M. L., et al. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany, 89, 907–916.

    Article  CAS  Google Scholar 

  39. Costa, E., Silva, F., Shvaleva, A., Maroco, J. P., Almeida, M. H., Chaves, M. M., et al. (2004). Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiology, 24, 1165–1172.

    Article  Google Scholar 

  40. Ober, E. S., & Sharp, R. E. (2003). Electrophysiological responses of maize roots to low water potentials: Relationship to growth and ABA accumulation. Journal of Experimental Botany, 54, 813–824.

    Article  CAS  Google Scholar 

  41. Pinheiro, H. A., Damatta, F. M., Chaves, A. R., Loureiro, M. E., & Ducatti, C. (2005). Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany, 96, 101–108.

    Article  Google Scholar 

  42. Sharp, R. E., & LeNoble, M. E. (2002). ABA, ethylene and the control of shoot and root growth under water stress. Journal of Experimental Botany, 53, 33–37.

    Article  CAS  Google Scholar 

  43. Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., et al. (2004). Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany, 55, 2343–2351.

    Article  CAS  Google Scholar 

  44. Tschaplinski, T. J., Tuskan, G. A., Gebre, G. M., & Todd, D. E. (1998). Drought resistance of two hybrid Populus clones grown in a large-scale plantation. Tree Physiology, 18, 653–658.

    Article  Google Scholar 

  45. Park, S., Jisheng, L., Jon, K. P., Gerald, A. B., Haibing, Y., Soledad, U., et al. (2005). Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 18830–18835.

    Article  CAS  Google Scholar 

  46. Hirschi, K. D. (1999). Expression of Arabidopsis CAX1 in tobacco: Altered calcium homeostasis and increased stress sensitivity. Plant Cell, 11, 2113–2122.

    CAS  Google Scholar 

  47. Buchman, A. R., & Berg, P. (1988). Comparison of intron-dependent and intron-independent gene expression. Molecular and Cellular Biology, 8, 4395–4405.

    CAS  Google Scholar 

  48. Chung, S., & Perry, R. (1989). Importance of introns for expression of mouse ribosomal protein gene rpL32. Molecular and Cellular Biology, 9, 2075–2082.

    CAS  Google Scholar 

  49. Okkema, P. G., Harrison, S. W., Plunger, V., Aryana, A., & Fire, A. (1993). Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics, 135, 385–404.

    CAS  Google Scholar 

  50. Ibrahim, M., Khan, S. A., Zafar, Y., Mansoor, S., Yusuf, A., & Mukhtar, Z. (2009). Expression of a full length Arabidopsis vacuolar H+pyrophosphatase (AVP1) gene in tobacco (Nicotiana tabaccum) to increase tolerance to drought and salt stress. Journal of Phytology, 1, 433–444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Ramzan Khan or Ghulam Muhammad Ali.

Additional information

Tanweer Kumar and Uzma have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, T., Uzma, Khan, M.R. et al. Genetic Improvement of Sugarcane for Drought and Salinity Stress Tolerance Using Arabidopsis Vacuolar Pyrophosphatase (AVP1) Gene. Mol Biotechnol 56, 199–209 (2014). https://doi.org/10.1007/s12033-013-9695-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9695-z

Keywords

Navigation