Skip to main content
Log in

Photosynthesis under stressful environments: An overview

  • Review
  • Published:
Photosynthetica

Abstract

Stressful environments such as salinity, drought, and high temperature (heat) cause alterations in a wide range of physiological, biochemical, and molecular processes in plants. Photosynthesis, the most fundamental and intricate physiological process in all green plants, is also severely affected in all its phases by such stresses. Since the mechanism of photosynthesis involves various components, including photosynthetic pigments and photosystems, the electron transport system, and CO2 reduction pathways, any damage at any level caused by a stress may reduce the overall photosynthetic capacity of a green plant. Details of the stress-induced damage and adverse effects on different types of pigments, photosystems, components of electron transport system, alterations in the activities of enzymes involved in the mechanism of photosynthesis, and changes in various gas exchange characteristics, particularly of agricultural plants, are considered in this review. In addition, we discussed also progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants. We also discussed critically a current, worldwide effort to identify signaling components, such as transcription factors and protein kinases, particularly mitogen-activated protein kinases (MAPKs) involved in stress adaptation in agricultural plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ALA:

5-aminolevulinic acid

Car:

carotenoids

Chl:

chlorophyll

Fi :

the fluorescence at transient inflection level

Fo :

the minimal fluorescence

Fm :

the maximal fluorescence

Fp :

the fluorescence at peak level

Fv :

the variable fluorescence

g s :

stomatal conductance

LHC:

light harvesting complex

MAPKs:

mitogen-activated protein kinases

NADPH:

reduced form of nicotinamide adenine dinucleotide phosphate

NADP-ME:

NADP-malic enzyme

OEC:

oxygen evolving complex

qN or NPQ:

nonphotochemical quenching

Pchlide:

protochlorophyllide

PEPC:

phosphoenolpyruvate carboxylase

P N :

net photosynthetic rate

PPDK:

phosphopyruvate dikinase

PSII:

photosystem II

qP :

photochemical quenching

RWC:

relative water content

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

RUBP:

ribulose-1,5-bisphosphate

WUE:

water-use efficiency

References

  • Abdel Samad, H.M.: Counteraction of NaCl and CaCl2 or KCl on pigment, saccharide and mineral contents in wheat. — Biol. Plant. 35: 555–560, 1993.

    Article  CAS  Google Scholar 

  • Abdel-Latif, A.: Phosphoenolpyruvate carboxylase activity of wheat and maize seedlings subjected to salt stress. — Aust. J. Basic Appl. Sci. 2: 37–41, 2008.

    CAS  Google Scholar 

  • Abdeshahian, M., Nabipour, M., Meskarbashee, M.: Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. — Int. J. Chem. Biol. Eng. 4: 184–186, 2010.

    Google Scholar 

  • Akram, M.S., Ashraf, M.: Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower (Helianthus annuus L.). — J. Plant Nutr. 34: 1041–1057, 2011.

    Article  CAS  Google Scholar 

  • Akram, M.S., Athar, H.U.R., Ashraf, M.: Improving growth and yield of sunflower (Helianthus annuus L.) by foliar application of potassium hydroxide (KOH) under salt stress. — Pak. J. Bot. 39: 769–776, 2007.

    Google Scholar 

  • Akram, N.A., Ashraf, M.: Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. — Agrochimica 55: 94–104, 2011.

    CAS  Google Scholar 

  • Ali, Q., Athar, H.R., Ashraf, M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. — Plant Growth Regul. 56: 107–116, 2008.

    Article  CAS  Google Scholar 

  • Allakhverdiev, S.I., Los, D.A., Mohanty, P., Nishiyama, Y., Murata, N.: Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. — Biochim. Biophys. Acta 1767: 1363–1371, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Al-Taweel, K., Iwaki, T., Yabuta, Y., Shigeoka, S., Murata, N., Wadano, A.: A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. — Plant Physiol. 145: 258–265, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Aniszewski, T., Drozdov, S.N., Kholoptseva, E.S., Kurets, V.K., Obshatko, L.A., Popov, E.G. Talanov, A.V.: Effects of light and temperature parameters on net photosynthetic carbon dioxide fixation by whole plants of five lupin species (Lupinus albus L., Lupinus angustifolius L., Lupinus luteus L., Lupinus mutabilis Sweet. and Lupinus polyphyllus Lindl.). — Acta Agr. Scand., Sect. B, Soil Plant Sci. 51: 17–27, 2001.

    Google Scholar 

  • Anjum, S.A., Xie, X, Wang, L. et al.: Morphological, physiological and biochemical responses of plants to drought stress. — Afr. J. Agr. Res. 6: 2026–2032, 2011.

    Google Scholar 

  • Aragao, M.E.F., Guedes, M.M., Otoch, M.L.O., Guedes, M.I.F., Melo, D.F., Lima, M.G.S.: Differential responses of ribulose-1,5-bisphosphate carboxylase/oxygenase activities of two Vigna unguiculata cultivars to salt stress. — Braz. J. Plant Physiol. 17: 207–212, 2005.

    Article  Google Scholar 

  • Araus, J.L., Amaro, T., Voltas, J. et al.: Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. — Field Crops Res. 55: 209–223, 1998.

    Article  Google Scholar 

  • Arfan, M., Athar, H. R., Ashraf, M.: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in differently adapted spring wheat cultivars under salt stress? — J. Plant Physiol. 6: 685–694, 2007.

    Article  CAS  Google Scholar 

  • Ashraf, M.: Breeding for salinity tolerance in plants. — Crit. Rev. Plant Sci. 13: 17–42, 1994.

    Google Scholar 

  • Ashraf, M.: Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. — Environ. Exp. Bot. 45: 155–163, 2001.

    Article  PubMed  Google Scholar 

  • Ashraf, M.: Some important physiological selection criteria for salt tolerance in plants. — Flora 199: 361–376, 2004.

    Article  Google Scholar 

  • Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. — Biotechnol. Adv. 27: 84–93, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Ashraf, M., Ali, Q.: Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). — Environ. Exp. Bot. 63: 266–273, 2008.

    Article  CAS  Google Scholar 

  • Ashraf, M., Karim, F.: Screening of some cultivars/lines of black gram (Vigna mungo I., Hepper) for resistance to water stress. — Trop. Agr. 68: 57–62, 1991.

    Google Scholar 

  • Ashraf, M., Mehmood, S.: Response of four Brassica species to drought stress. — Environ. Exp. Bot. 30: 93–100, 1990.

    Article  Google Scholar 

  • Ashraf, M., Nawazish, S., Athar, H.R.: Are chlorophyll fluorescence and photosynthetic capacity potential physiological determinants of drought tolerance in maize (Zea mays L.). — Pak. J. Bot. 39: 1123–1131, 2007.

    Google Scholar 

  • Ashraf, M., O’Leary, J.W.: Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress, II. Water relations and photosynthetic capacity. — Acta Bot. Neerl. 45: 29–39, 1996.

    CAS  Google Scholar 

  • Ashraf, M., Sultana, R.: Combination effect of NaCl salinity and N-form on mineral composition of sunflower plants. — Biol. Plant. 43: 615–619, 2000.

    Article  CAS  Google Scholar 

  • Ashraf, M.Y., Azmi, A.R., Khan, A.H., Ala, S.A.: Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). — Acta Physiol. Plant. 16: 185–191, 1994.

    CAS  Google Scholar 

  • Athar, H., Ashraf, M.: Photosynthesis under drought stress. — In: Pessarakli, M. (ed.): Photosynthesis, 2nd Ed. Pp. 795–810. CRC Press, New York 2005.

    Google Scholar 

  • Baker, N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Baker, N.R., Rosenqvist, E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. — J. Exp. Bot. 55: 1607–1621, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Balouchi, H.R.: Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. — Int. J. Biol. Life Sci. 6: 56–66, 2010.

    Google Scholar 

  • Bączek-Kwinta, R., Kozieł, A., Seidler-Łożykowska, K.: Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia yield in drought conditions? — Photosynthetica 49: 87–97, 2011.

    Article  Google Scholar 

  • Bayramov, S.M., Babayev, H.G., Khaligzade, M.N. et al.: Effect of water stress on protein content of some Calvin cycle enzymes in different wheat genotypes. — PANAS 65: 106–111, 2010.

    Google Scholar 

  • Begonia, G.B., Begonia, M.T.: Plant photosynthetic production as controlled by leaf growth, phenology, and behavior. — Photosynthetica 45: 321–333, 2007.

    Article  Google Scholar 

  • Benfey, P.N., Chua, N.H.: The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. — Science 25: 959–966, 1990.

    Article  Google Scholar 

  • Berry, J.A., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.

    Article  Google Scholar 

  • Bijanzadeh, E., Emam, Y.: Effect of defoliation and drought stress on yield components and chlorophyll content of wheat. — Pak. J. Biol. Sci. 13: 699–705, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Biswal, B., Joshi, P.N., Raval, M.K., Biswal, U.C.: Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. — Curr. Sci. 101: 47–56, 2011.

    CAS  Google Scholar 

  • Biswal, B., Raval, M.K., Biswal, U.C., Joshi, P.: Response of photosynthetic organelles to abiotic stress: modulation by sulfur metabolism. — In: Khan, N.A., Singh, S., Umar, S. (ed.): Sulfur Assimilation and Abiotic Stress in Plants. Pp. 167–191. Springer-Verlag, Berlin — Heidelberg 2008.

    Chapter  Google Scholar 

  • Bousba, R., Ykhlef, N., Djekoun, A.: Water use efficiency and flag leaf photosynthetic in response to water deficit of durum wheat (Triticum durum Desf.). — World J. Agr. Sci. 5: 609–616, 2009.

    CAS  Google Scholar 

  • Brock, M.T., Galen, C.: Drought tolerance in the alpine dandelion, Taraxacum ceratophorum (Asteraceae), its exotic congenter T. officinale and interspecific hybrids under natural and experimental conditions. — Amer. J. Bot. 92: 1311–1321, 2005.

    Article  Google Scholar 

  • Brown, R.H., Bouton, J.H.: Physiology and genetics of interspecific hybrids between phytosynthetic type. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 435–456, 1993.

    Article  Google Scholar 

  • Brugnoli, E., Scartazza, A., De Tullio, M.C., et al.: Zeaxanthin and non-photochemical quenching in sun and shade leaves of C3 and C4 plants. — Physiol. Plant. 104: 727–734, 1998.

    Article  CAS  Google Scholar 

  • Caires, A.R.L., Scherer, M.D., Santos, T.S.B., Pontim, B.C.A., Gavassoni, W.L., Oliveira, S.L.: Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence. — J. Fluorescence 20: 645–649, 2010.

    Article  CAS  Google Scholar 

  • Camejo, D., Rodríguez, P., Morales, A.M. et al.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. — J. Plant Physiol. 162: 281–289, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Centritto, M., Brilli, F., Fodale, R. et al.: Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. — Tree Physiol. 31: 258–261, 2011.

    Article  CAS  Google Scholar 

  • Chandra Babu, R., Srinivasan, P., Natarajaratnam, N., Rangasamy, S.: Relationship between leaf photosynthetic rate and yield in blackgram (Vigna mungo L. Hepper) genotypes. — Photosynthetica 19: 159–163, 1985.

    Google Scholar 

  • Chattopadhyay, S., Ang, L.H., Puente, P. et al.: Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. — Plant Cell 10: 673–683, 1998.

    PubMed  CAS  Google Scholar 

  • Chaves, M.M., Flexas, J., Pinheiro, C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. — Ann. Bot. 103: 551–560, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chinthapalli, B., Murmu, J., Raghavendra, A.S.: Dramatic difference in the responses of phosphoenolpyruvate carboxylase to temperature in leaves of C3 and C4 plants. — J. Exp. Bot. 54: 707–714, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Conde, A., Chaves, M.M., Gerós, H.: Membrane transport, sensing and signaling in plant adaptation to environmental stress. — Plant Cell Physiol. 52: 1583–1602, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Cornish, K., Radin, J.W., Turcotte, E.L., Luand, Z., Zeiger, E.: Enhanced photosynthesis and stomatal conductance of Pima cotton (Gossypium barbadense L.) bred for increased yield. — Plant Physiol. 97: 484–489, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner, S.J., Salvucci, M.E.: Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. — Proc. Natl. Acad. Sci. USA 97: 13430–13435, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner, S.J., Salvucci, M.E.: Sensitivity of photosynthesis in a C4 plant maize to heat stress. — Plant Physiol. 129: 1773–1780, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Crosbie, T.M., Pearce, R.B.: Effects of recurrent phenotypic selection for high and low photosynthesis on agronomic traits in two maize populations. — Crop Sci. 22: 809–813, 1982.

    Article  Google Scholar 

  • Curtis, P.S., Läuchli, A.: The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress. — Aust. J. Plant Physiol. 13: 353–365, 1986.

    Article  Google Scholar 

  • Curtiss, J., Rodriguez-Uribe, L., Stewart, J.M., Zhang, J.: Identification of differentially expressed genes associated with semigamy in pima cotton (Gossypium barbadense L.) through comparative microarray analysis. — BMC Plant Biol. 11: 49, 2011.

    Article  PubMed  CAS  Google Scholar 

  • da Graça, J.P., Rodrigues, F.A., Farias, J.R.B., de Oliveira, M.C.N., Hoffmann-Campo, C.B., Zingaretti, S.M.: Physiological parameters in sugarcane cultivars submitted to water deficit. — Braz. J. Plant Physiol. 22: 189–197, 2010.

    Article  Google Scholar 

  • da Silva, E.N., Ribeiro, R.V., Ferreira-Silva, S.L., Viégas, R.A., Silveira, J.A.G.: Salt stress induced damages on the photosynthesis of physic nut young plants. — Sci. Agr. 68: 62–68, 2011.

    Article  Google Scholar 

  • Dai, X., Xu, Y., Ma, O., et al.: Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. — Plant Physiol. 143: 1739–1751, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Damayanthi, M.M.N., Mohotti, A.J., Nissanka, S.P.: Comparison of tolerant ability of mature field grown tea (Camellia sinensis L.) cultivars exposed to a drought stress in passara area. — Trop. Agr. Res. 22: 66–75, 2010.

    Google Scholar 

  • David, M.M., Coelho, D., Barrote, I., Correia, M. J.: Leaf age effects on photosynthetic activity and sugar accumulation in droughted and rewatered Lupinus albus plants. — Aust. J. Plant Physiol. 25: 299–306, 1998.

    Article  CAS  Google Scholar 

  • Davison, P.A., Hunter, C.N., Horton, P.: Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. — Nature 418: 203–206, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W. III: Carotenoid composition in sun and shade leaves of plants with different life forms. — Plant Cell Environ. 15: 411–419, 1992.

    Article  CAS  Google Scholar 

  • Dias, M.C., Brüggemann, W.: Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. — Photosynthetica 48: 96–102, 2010a.

    Article  CAS  Google Scholar 

  • Dias, M.C., Brüggemann, W.: Water-use efficiency in Flaveria species under drought-stress conditions. — Photosynthetica 48: 469–473, 2010b.

    Article  CAS  Google Scholar 

  • Diédhiou, C.J., Popova, O.V., Dietz, K.J., Golldack, D.: The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. — BMC Plant Biol. 8: 49, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Din, J., Khan, S.U., Ali, I., Gurmani, A.R.: Physiological and agronomic response of canola varieties to drought stress. — J. Anim. Plant Sci. 21: 78–82, 2011.

    Google Scholar 

  • Dobrikova, A., Petkanchin, I., Taneva, S.G.: Temperatureinduced changes in the surface electric properties of thylakoids and photosystem II membrane fragments. — Colloid. Surface. A 209: 185–192, 2002.

    Article  CAS  Google Scholar 

  • Dodd, I.C.: Hormonal interactions and stomatal responses. — J. Plant Growth Regul. 22: 32–46, 2003.

    Article  CAS  Google Scholar 

  • Doubnerová, V., Ryšlavá, H.: What can enzymes of C4 photosynthesis do for C3 plants under stress? — Plant Sci. 180: 575–583, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Du, Y.C., Nose, A., Wasano, K., Uchida, Y.: Responses to water stress of enzyme activities and metabolite levels in relation to sucrose and starch synthesis, the Calvin cycle and the C4 pathway in sugarcane (Saccharum sp.) leaves. — Aust. J. Plant Physiol. 25: 253–260, 1998.

    Article  CAS  Google Scholar 

  • Duan, H.G., Yuan, S., Liu, W.J. et al.: Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. — J. Integr. Plant Biol. 48: 920–927, 2006.

    Article  CAS  Google Scholar 

  • Dulai, S., Molnár, I., Molnár-Láng, M.: Changes of photosynthetic parameters in wheat/barley introgression lines during salt stress. — Acta Biol. Szeged 55: 73–75, 2011.

    Google Scholar 

  • Dutta, S., Mohanty, S., Tripathy, B.C.: Role of temperature stress on chloroplast biogenesis and protein import in pea. — Plant Physiol. 150: 1050–1061, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Eckardt, N.A.: A new chlorophyll degradation pathway. — Plant Cell 21: 700, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Efeoglu, B., Ekmekçi, Y., Çiçek, N.: Physiological responses of three maize cultivars to drought stress and recovery. — S. Afr. J. Bot. 75: 34–42, 2009.

    Article  Google Scholar 

  • Efeoglu, B., Terzioglu, S., Photosynthetic responses of two wheat varieties to high temperature. — EurAsia J. BioSci. 3: 97–106, 2009.

    Article  Google Scholar 

  • El-Shintinawy, F.: Photosynthesis in two wheat cultivars differing in salt susceptibility. — Photosynthetica 38: 615–620, 2000.

    Article  CAS  Google Scholar 

  • Estill, K., Delaney, R.H., Smith, W.K., Ditterline, R.L.: Water relations and productivity of alfalfa leaf chlorophyll variants. — Crop Sci. 31: 1229–1233, 1991.

    Article  Google Scholar 

  • Everard, J.D., Gucci, R, Kann, S.C., Flore, J.A., Loescher, W.H.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. — Plant Physiol. 106: 281–292, 1994.

    PubMed  CAS  Google Scholar 

  • Fang, Z., Bouwkamp, J., Solomos, T.: Chlorophyllase activities and chlorophyll degradation during leaf senescence in nonyellowing mutant and wild type of Phaseolus vulgaris L. — J. Exp. Bot. 49: 503–510, 1998.

    CAS  Google Scholar 

  • Faville, M.J., Silvester, W.B., Allan Green, T.G., Jermyn, W.A.: Photosynthetic characteristics of three asparagus cultivars differing in yield. — Crop Sci. 39: 1070–1077, 1999.

    Article  Google Scholar 

  • Feng, L.L., Han, Y.J., Liu, G. et al.: Overexpression of sedoheptulose-1, 7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. — Funct. Plant Biol. 34: 822–834, 2007.

    Article  CAS  Google Scholar 

  • Fischer, R.A., Rees, D., Sayre, K.D. et al.: Wheat yield progress is associated with higher stomatal conductance, higher photosynthetic rate and cooler canopies. — Crop Sci. 38: 1467–1475, 1998.

    Article  Google Scholar 

  • Flagella, Z., Campanile, R.G., Ronga, G. et al.: The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance. — Plant Sci. 118: 127–133, 1996.

    Article  CAS  Google Scholar 

  • Flexas, J., Bota, J., Escalona, J.M. et al.: Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. — Funct. Plant Biol. 29: 461–471, 2002.

    Article  Google Scholar 

  • Flexas, J., Bota, J., Loreto, F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. — Plant Biol. 6: 269–279, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, T.J., Troke, P.F., Yeo, A.R.: The mechanism of salt tolerance in halophytes. — Annu. Rev. Plant Physiol. 28: 89–121, 1977.

    Article  CAS  Google Scholar 

  • Freschi, L., Mercier, H.: Connecting environmental stimuli and crassulacean acid metabolism expression: Phytohormones and other signaling molecules. — Prog. Bot. 73: 231–255, 2012.

    Article  CAS  Google Scholar 

  • Fristedt, R., Willig, A., Granath, A. et al.: Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. — Plant Cell 21: 3950–3964, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Fukayama, H., Tsuchida, H., Agarie, S.: Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. — Plant Physiol. 127: 1136–1146, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, E., Arata, Y., Endo, T. et al.: Improved salt tolerance of transgenic tobacco expressing apoplastic yeastderived invertase. — Plant Cell Physiol. 42: 245–249, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Galmés, J., Medrano, H., Flexas, J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. — New Phytol. 175: 81–93, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Galmés, J., Ribas-Carbó, M., Medrano, H., Flexas, J.: Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. — J. Exp. Bot. 62: 653–665, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Garg, A., Kim, J.K., Owens, T.G., et al.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. — Proc. Natl. Acad. Sci. USA 99: 15898–15903, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Geissler, N., Hussin, S., Koyro, H.W.: Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. — Environ. Exp. Bot. 65: 220–231, 2009.

    Article  CAS  Google Scholar 

  • Ghosh, S., Bagchi, S., Majumder, A.L.: Chloroplast fructose-1,6-bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. — Plant Sci. 160: 1171–1181, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S.S, Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S.S., Khan, N.A., Tuteja, N.: Differential cadmium stress tolerance in five indian mustard (Brassica juncea L.) cultivars: An evaluation of the role of antioxidant machinery. — Plant Signal Behav. 6: 293–300, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Gimenez, C., Mitchell, V.J., Lawlor, D.W.: Regulation of photosynthesis rate of two sunflower hybrids under water stress. — Plant Physiol. 98: 516–524, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Gomathi, R., Rakkiyapan, P.: Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. — Int. J. Plant Physiol. Biochem. 3: 67–74, 2011.

    CAS  Google Scholar 

  • Gombos, Z., Wada, H., Hideg, E., Murata, N.: The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. — Plant Physiol. 104: 563–567, 1994.

    PubMed  CAS  Google Scholar 

  • Goodall, G.J., Filipowicz, W.: Different effects of intron nucleotide composition and secondary structure on premRNA splicing in monocot and dicot plants. — EMBO J. 10: 2635–2644, 1991.

    PubMed  CAS  Google Scholar 

  • Guidi, L., Nali, C., Ciompi, S. et al.: The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. — J. Exp. Bot. 48: 173–179, 1997.

    Article  CAS  Google Scholar 

  • Gunasekera, D., Berkowitz, G.A.: Use of transgenic plants with ribulose-1,5-bisphosphate carboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesis under water stress. — Plant Physiol. 103: 629–635, 1993.

    PubMed  CAS  Google Scholar 

  • Guo, B.Z., Butrón, A., Li, H., Widstrom, N.W., Lynch, R.E.: Restriction fragment length polymorphism assessment of the heterogeneous nature of maize population GT-MAS:gk and field evaluation of resistance to aflatoxin production by Aspergillus flavus. — J. Food Prot. 65: 167–171, 2002.

    PubMed  CAS  Google Scholar 

  • Guóth, A., Tari, I., Gallé, I., et al.: Chlorophyll a fluorescence induction parameters of flag leaves characterize genotypes and not the drought tolerance of wheat during grain filling under water deficit. — Acta Biol. Szeged. 53: 1–7, 2009.

    Google Scholar 

  • Haldimann, P., Strasser, R.J.: Effects of anaerobiosis as probed by the polyphasic chlorophyll fluorescence rise kinetics in pea (Pisum sativum L.). — Photosynth. Res. 62: 67–83, 1999.

    Article  CAS  Google Scholar 

  • Hamada, A.M., Al-Hakimi, A.M.A.: Salicylic acid versus salinity-drought induced stress on wheat seedlings. — Rostlinná výroba 47: 444–450, 2001.

    CAS  Google Scholar 

  • Hamada, A.M., El-Enany, A.E.: Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. — Biol. Plant. 36: 75–81, 1994.

    Article  CAS  Google Scholar 

  • Hamdani, S., Gauthier, A., Msilini, N., Carpentier, R.: Positive charges of polyamines protect PSII in isolated thylakoid membranes during photoinhibitory conditions. — Plant Cell Physiol. 52: 866–873, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, D.W.A., Hills, A., Kohler, B., Blatt, M.R.: Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. — Proc. Natl. Acad. Sci. USA 97: 4967–4972, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Han, W., Xu, X.W., Li, L. et al.: Chlorophyll a fluorescence responses of Haloxylon ammodendron seedlings subjected to progressive saline stress in the Tarim desert highway ecological shelterbelt. — Photosynthetica 48: 635–640, 2010.

    Article  CAS  Google Scholar 

  • Harb, A., Krishnan, A., Madana, M.R.: Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. — Plant Physiol. 154: 1254–1271, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Harpaz-Saad, S., Azoulay, T., Arazi, T. et al.: Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. — Plant Cell 19: 1007–1022, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Häusler, R.E., Hirsch, H.J., Kreuzaler, F., Peterhansel, C.: Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. — J. Exp. Bot. 53: 591–607, 2002.

    Article  PubMed  Google Scholar 

  • Havaux, M.: Short-term responses of photosystem I to heat stress — Induction of a PS II-independent electron transport through PS I fed by stromal components. — Photosynth. Res. 47: 85–97, 1996.

    Article  CAS  Google Scholar 

  • Havaux, M., Ernez, M., Lannoye, R.: Correlation between heat tolerance and drought tolerance in cereals demonstrated by rapid chlorophyll fluorescence tests. — J. Plant Physiol. 133: 555–560, 1988.

    Article  CAS  Google Scholar 

  • Havaux, M., Tardy, F., Ravene, J. et al.: Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. — Plant Cell Environ. 19: 1359–1368, 1996.

    Article  CAS  Google Scholar 

  • Hawkins, H. J., Lewis, O.A.M.: Combination effect of NaCl salinity, nitrogen form and calcium concentration on the growth and ionic content and gaseous properties of Triticum aestivum L. cv. Gamtoos. — New Phytol. 124: 161–170, 1993.

    Article  CAS  Google Scholar 

  • He, J.X., Wang, J., Liang, H.G.: Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. — Physiol. Plant. 93: 771–777, 1995.

    Article  CAS  Google Scholar 

  • Hernandez, J.A., Olmos, E., Corpas, F.J. et al.: Salt-induced oxidative stress in chloroplasts of pea plants. — Plant Sci. 105: 151–167, 1995.

    Article  CAS  Google Scholar 

  • Hester, M.W., Mendelsohn, I.A., Mckee, K.L.: Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. — Environ. Exp. Bot. 46: 277–297, 2001.

    Article  CAS  Google Scholar 

  • Hieber, A.D., Kawabata, O., Yamamoto, H.Y.: Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles. — Plant Cell Physiol. 45: 92–102, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hirel, B., Le Gouis, J., Ney, B., Gallais, A.: The challenge of improving nitrogen use efficiency in crop plants towards a more central role for genetic variability and quantitative genetics within integrated approaches. — J. Exp. Bot. 58: 2369–2387, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H., Zhang, Q., Zhao, L. et al..: Lutein plays a key role in the protection of photosynthetic apparatus in arabidopsis under severe oxidative stress? — Pak. J. Bot. 42: 2765–2774, 2010.

    CAS  Google Scholar 

  • Huang, X., Luo, T., Fu, X. et al.: Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. — J. Exp. Bot. 62: 5191–5206, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth, R.L., Grula, J.W., Dai, Z. et al.: Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco. Effects on biochemistry and physiology. — Plant Physiol. 98: 458–464, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hura, T., Grzesiak, S., Hura, K., et al.: Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods. — Acta Physiol. Plant. 28: 433–443, 2006.

    Article  CAS  Google Scholar 

  • Huseynova, M., Suleymanov, S.Y., Rustamova S.M., Aliyev. JA.: Drought-induced changes in photosynthetic membranes of two wheat (Triticum aestivum L.) cultivars. — Russ. Biokhimiya 74: 1109–1116, 2009.

    Google Scholar 

  • Inagaki, M., Omori, E., Kim, J.Y., Komatsu, Y., Scott, G., Ray, M.K., Yamada, G., Matsumoto, K., Mishina, Y., Ninomiya-Tsuji, J.: TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling. — J. Biol. Chem. 283: 33080–33086, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Isaksson, C., Andersson, S.: Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. — Proc. R Soc. Biol. Sci. Ser. B 275: 309–314, 2008.

    Article  CAS  Google Scholar 

  • Islam, M.T.: Effect of temperature on photosynthesis, yield attributes and yield of aromatic rice genotypes. — Int. J. Sustain. Crop Prod. 6: 14–16, 2011.

    CAS  Google Scholar 

  • Iwaia, M., Yokonoa, M., Inadab, N., Minagawa, J.: Live-cell imaging of photosystem II antenna dissociation during state transitions. — Proc. Natl. Acad. Sci. USA 107: 2337–2342, 2010.

    Article  Google Scholar 

  • Izui, K., Ishijima, S., Yamaguchi, Y. et al.: Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. — Nucleic Acids Res. 14: 1615–1628, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Jafarinia, M., Shariati, M.: Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. — Iran. J. Sci. Technol. A1: 71–76, 2012.

    Google Scholar 

  • Jain, M., Tiwary, S., Gadre, R.: Sorbitol-induced changes in various growth and biochemicalp arameters in maize. — Plant Soil Environ. 56: 263–267, 2010.

    CAS  Google Scholar 

  • Jaleel, C.A., Manivannan, P., Wahid, A. et al.: Drought stress in plants: a review on morphological characteristics and pigments composition. — Int. J. Agr. Biol. 11: 100–105, 2009.

    Google Scholar 

  • James, R.A., Rivelli, A.R., Munns, R., von Caemmerer, S.: Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. — Funct. Plant Biol. 29: 1393–1403, 2002.

    Article  CAS  Google Scholar 

  • Jamil, M., Rehman, S., Lee, K.J., Kim, J.M., Kim, H., Rha, E.S.: Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. — Sci. Agr. 64: 111–118, 2007.

    Article  CAS  Google Scholar 

  • Janknecht, R.: Regulation of the ER81 transcription factor and its coactivators by mitogen- and stress-activated protein kinase 1 (MSK1). — Oncogene 22: 746–755, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Jeanneau, M., Gerentes, D., Foueillassar, X., et al.: Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. — Biochimie 84: 1127–1135, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jia, W., Zhang, J.: Stomatal movements and long-distance signaling in plants. — Plant Signal Behav. 3: 772–777, 2008.

    Article  PubMed  Google Scholar 

  • Jin, M-X, Li, D-Y, Mi, H.: Effects of high temperature on chlorophyll fluorescence induction and the kinetics of far red radiation-induced relaxation of apparent Fo in maize leaves. — Photosynthetica 40: 581–586, 2002.

    Article  CAS  Google Scholar 

  • Jonak, C., Ökrész, L., Bögre, L., Hirt, H.: Complexity, cross talk and integration of plant MAP kinase signalling. — Curr. Opin. Plant Biol. 5: 415–424, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, M.K., Desai, T.S., Mohanty, P.: Temperature-dependent alterations in the pattern of photochemical and nonphotochemical quenching and associated changes in the photosystem II conditions of the leaves. — Plant Cell Physiol. 36: 1221–1227, 1995.

    CAS  Google Scholar 

  • Juan, M., Rivero, R.M., Romero, L., Ruiz, J.M.: Evaluation of some nutritional and biochemical indicators in selecting saltresistant tomato cultivars. — Environ. Exp. Bot. 54: 193–201, 2005.

    Article  CAS  Google Scholar 

  • Kaewsuksaeng, S.: Chlorophyll degradation in horticultural crops. — Walailak J. Sci. Technol. 8: 9–19, 2011.

    Google Scholar 

  • Kaiser, W.M., Heber, U.: Photosynthesis under osmotic stress. Effect of high solute concentration on the permeability of the chloroplast envelope and on the activity of stroma enzymes. — Planta 153: 423–429, 1981.

    Article  CAS  Google Scholar 

  • Kajala, K., Brown, N.J., Williams, B.P. et al.: Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. — Plant J. 69: 47–56, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Kannan, N.D., Kulandaivelu, G.: Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. — J. Med. Plants Res. 5: 3929–3935, 2011.

    CAS  Google Scholar 

  • Kant, P., Kant, S., Gordon, M., Shaked, R., Barak, S.: STRS1 and STRS2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. — Plant Physiol. 145: 814–830, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Karaba, A., Dixit, S., Greco, R. et al.: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. — Proc. Natl. Acad. Sci. USA 104: 15270–15275, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, K., Umenab, Y., Kamiyab, N., Shen, J., Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. — Proc. Natl. Acad. Sci. USA 106: 8567–8572, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, G.J.: Photosynthesis, carbon metabolism: The Calvin cycle’s golden jubilee. — In: Kelly, G.J., Latzko, E. (ed.): Thirty Years of Photosynthesis 1974–2004. Pp. 382–410, Springer, Heidelberg 2006.

    Chapter  Google Scholar 

  • Kempa, S., Krasensky, J., Dal Santo, S. et al.: A central role of abscisic acid in stress-regulated carbohydrate metabolism. — PLoS ONE 3: 3935, 2008.

    Article  CAS  Google Scholar 

  • Khafagy, M.A., Arafa, A.A., El-Banna, M.F.: Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. — Aust. J. Crop Sci. 3: 257–267, 2009.

    CAS  Google Scholar 

  • Khan, M.A., Shirazi, M.U., Khan, M.A. et al.: Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). — Pak. J. Bot. 41: 633–638, 2009.

    Google Scholar 

  • Kiani, S.P., Grieu, P., Maury, P., Hewezi, T., Gentzbittel, L., Sarrafi, A.: Genetic variability for physiological traits under drought conditions and differential expression of water stress associated genes in sunflower (Helianthus annuus L.). Biomed. — Life Sci. 114: 193–207, 2007.

    CAS  Google Scholar 

  • Kitroongruang, N., Jodo, S., Hisai, J., Kato, M.: Photosynthesis characteristics of melons grown under high temperatures. — J. Japan. Soc. Hort. Sci. 61: 107–114, 1992.

    Article  Google Scholar 

  • Kogami, H., Shono, M., Koike, T. et al.: Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. — Transgenic Res. 3: 287–296, 1994.

    Article  CAS  Google Scholar 

  • Kohler, B., Blatt, M.R.: Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. — Plant J. 32: 185–194, 2002.

    Article  PubMed  Google Scholar 

  • Kossman, J., Sonnewald, U., Willmitzer, L.: Reduction of the chloroplastic fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. — Plant J. 6: 637–650, 1994.

    Article  Google Scholar 

  • Kozaki, A., Takeba, G.: Photorespiration protects C3 plants from photooxidation. — Nature 384: 557–560, 1996.

    Article  CAS  Google Scholar 

  • Krishnan, H.B., Pueppke, S.G.: Heat shock triggers rapid protein phosphorylation in soybean seedlings. — Biochem. Biophys. Res. Commun. 148: 762–767, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Ku, M.S.B., Agarie, S., Nomura, M., et al.: High level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. — Nat. Biotechnol. 17: 76–80, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kuczyńska, P., Latowski, D., Niczyporuk, S. et al.: Zeaxanthin epoxidation-an in vitro approach. — Acta Biochim. Polonica 59: 105–107, 2012.

    Google Scholar 

  • Kulshrehtha, S., Mishra, D.P., Gupta, R.K.: Changes in contents of chlorophyll, proteins and lipids in whole chloroplasts and chloroplast membrane fractions at different water potential in drought resistant and sensitive genotypes of wheat. — Photosynthetica 21: 65–70, 1987.

    Google Scholar 

  • Kumar, A., Li, C., Portis, A.R.J.: Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. — Photosynth. Res. 100: 143–153, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Singh, B.: Effect of water stress on carbon isotope discrimination and Rubisco activity in bread and durum wheat genotypes. — Physiol. Mol. Biol. Plants 15: 281–286, 2009.

    Article  PubMed  Google Scholar 

  • Kurek, I., Chang, T.K., Bertain, S.M. et al.: Enhanced thermostability of Arabidopsis rubisco activase improves photosynthesis and growth rates under moderate heat stress. — Plant Cell 19: 3230–3241, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Latowski, D., Åkerlund, H.E., Strzalka, K.: Violaxanthin deepoxidase, the xanthophylls cycle enzyme, requires lipid inverted hexagonal structures for its activity. — Biochemistry 43: 4417–4420, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor, D.W.: Photosynthesis. 3rd Ed. — Scientific Publishers Limited, Oxford, 2001.

    Google Scholar 

  • Lawlor, D.W.: Limitation to photosynthesis in water stressed leaves: stomata versus metabolism and the role of ATP. — Ann. Bot. 89: 1–15, 2002.

    Article  CAS  Google Scholar 

  • Lawlor, D.W.: Musings about the effects of environment on photosynthesis. — Ann. Bot. 103: 543–549, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor, D.W., Tezara, W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. — Ann. Bot. 103: 543–549, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.P., Kim, S.H., Bang, J.W. et al.: Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. — Plant Cell Rep. 26: 591–598, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lemeille, S., Rochaix, J.D.: State transitions at the crossroad of thylakoid signalling pathways. — Photosynth. Res. 106: 33–46, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Levi, A., Ovnat, L., Paterson, A.H., Saranga, Y.: Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. — Plant Sci. 177: 88–96, 2009.

    Article  CAS  Google Scholar 

  • Li, F., Vallabhaneni, R., Yu, J. et al.: The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis and thermal stress tolerance. — Plant Physiol. 147: 1334–1346, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Liu, H., Li, L. et al.: Carbon isotope composition of plants along an altitudinal gradient and its relationship to environmental factors on the Qinghal-Tibet Plateau. — Polish J. Ecol. 55: 67–78, 2007.

    CAS  Google Scholar 

  • Li, T., Zhang, Y., Liu, H. et al.: Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 and salt tolerance in transgenic soybean for over six generations. — Chinese Sci. Bull. 55: 1127–1134, 2010.

    Article  CAS  Google Scholar 

  • Liu, J., Shi, D.C.: Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. — Photosynthetica 48: 127–134, 2010.

    Article  CAS  Google Scholar 

  • Liu, N., Ko, S., Yeh, K.C., Charng, Y.: Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. — Plant Sci. 170: 976–985, 2006.

    Article  CAS  Google Scholar 

  • Liu, X., Wang, Z., Wang, L. et al.: LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. — Plant Sci. 176: 90–98, 2009.

    Article  CAS  Google Scholar 

  • Loreto, F., Centritto, M., Chartzoulakis, K.: Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. — Plant Cell Environ. 26: 595–604, 2003.

    Article  CAS  Google Scholar 

  • Los, D.A., Zorina, A., Sinetova, M. et al.: Stress sensors and signal transducers in cyanobacteria. — Sensors 10: 2386–2415, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ludlow, M.M., Ng, T.T.: Water stress suspends leaf ageing. — Plant Sci. Lett. 3: 235–240, 1974.

    Article  Google Scholar 

  • Lundin, B., Thuswaldner, S., Shutova, T. et al.: Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. — Biochim. Biophys. Acta 1767: 500–508, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Mafakheri, A., Siosemardeh, A., Bahramnejad, B. et al.: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. — Aust. J. Crop Sci. 4: 580–585, 2010.

    CAS  Google Scholar 

  • Makino, A.: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. — Plant Physiol. 155: 125–129, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Marques da Silva, J., Arrabica, M.C.: Effect of water stress on Rubisco activity of Setaria sphacelota. — In: Mathis, P. (ed.) Photosynthesis: From Light to Biosphere. Pp. 545–548. Vol. IV. Kluwer, Dordrect — Boston — London 1995.

    Google Scholar 

  • Matsuoka, M., Furbank, R., Fukayama, H., Miyao, M.: Molecular engineering of C4 photosynthesis. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 297–314, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mattana, M., Biazzi, E., Consonni, R. et al.: Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. — Physiol. Plant. 125: 212–223, 2005.

    Article  CAS  Google Scholar 

  • Maxwell, B.B., Andersson, C.R., Poole, D.S. et al.: HY5, Circadian clock-associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of chlorophyll a/b-binding protein 2 expression. — Plant Physiol. 133: 1565–1577, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence—a practical guide. — J. Exp. Bot. 50: 659–668, 2000.

    Article  Google Scholar 

  • Medici, L.O., Azevedo, R.A., Canellas, L.P. et al.: Stomatal conductance of maize under water and nitrogen deficits. — Pesq. Agropec. Bras. 42: 599–601, 2007.

    Article  Google Scholar 

  • Medrano, H., Escalona, J.M., Bota, J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: the stomatal conductance as a reference parameter. — Ann. Bot. 89: 895–905, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Medrano, H., Parry, M.A.J., Socias, X., Lawlor, D.W.: Longterm water stress inactivates rubisco in subterranean clover. — Ann. Appl. Biol. 131: 491–501, 1997.

    Article  CAS  Google Scholar 

  • Mehta, P., Jajoo, A., Mathur, S., Bharti, S.: Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. — Plant Physiol. Biochem. 48: 16–20, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Melcher, K., Ng, L.M., Zhou, X.E. et al.: A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. — Nature 462: 602–608, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Mittal, S., Kumari, N., Sharma, V.: Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. — Plant Physiol. Biochem. 54: 17–26, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Misra, A.N., Latowski, D., Strzalka, K.: The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. — Russ. J. Plant Physiol. 53: 113–121, 2006.

    Article  CAS  Google Scholar 

  • Miyao, M.: Molecular evolution and genetic engineering of C4 photosynthetic enzymes. — J. Exp. Bot. 54: 179–189, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, T., Irie, K., Hirayama, T. et al.: A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. — Proc. Natl. Acad. Sci. USA 93: 765–769, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Moghaieb, R.E.A., Tanaka, N., Saneoka, H. et al.: Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabacum): photosynthesis, osmotic adjustment, and nitrogen partitioning. — Plant Cell Environ. 29: 173–182, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mohanty, S., Baishna, B.G., Tripathy, C.: Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. — Planta 224: 692–699, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Monirifar, H., Barghi, M.: Identification and selection for salt tolerance in alfalfa (Medicago sativa L.) ecotypes via physiological traits. — Notulae Sci. Biol. 1: 63–66, 2009.

    CAS  Google Scholar 

  • Moradi, F., Ismail, A.M.: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. — Ann. Bot. 99: 1161–1173, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Moud, A.M., Maghsoudi, K.: Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. — World J. Agr. Sci. 4: 351–358, 2008.

    Google Scholar 

  • Mumm, P., Wolf, T., Fromm, J. et al.: Cell type-specific regulation of ion channels within the maize stomatal complex. — Plant Cell Physiol. 52: 1365–1375, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Muranaka, S., Shimizu, K., Kato, M.: A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. — Photosynthetica 40: 509–515, 2002.

    CAS  Google Scholar 

  • Nakagami, H, Pitzschke A, Hirt H.: Emerging MAP kinase pathways in plant stress signalling. — Trends Plant Sci. 10: 339–346, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Nash, D., Miyao, M., Murata, N.: Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. — Biochim. Biophys. Acta 807: 127–133, 1985.

    Article  CAS  Google Scholar 

  • Neta-Sharir, I., Isaacson, T., Lurie, S., Weissa, D.: Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. — Plant Cell 17: 1829–1838, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Niyogi, K.K., Björkman, O., Grossman, A.R.: Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. — Plant Cell 9: 1369–1380, 1997.

    PubMed  CAS  Google Scholar 

  • Noreen, Z., Ashraf, M., Akram, N.A.: Salt-induced modulation in some key gas exchange characteristics and ionic relations in pea (Pisum sativum L.) and their use as selection criteria. — Crop Pasture Sci. 61: 369–378, 2010.

    Article  CAS  Google Scholar 

  • Noreen, Z., Ashraf, M., Akram, N.A.: Salt-induced regulation of photosynthetic capacity and ion accumulation in some genetically diverse cultivars of radish (Raphanus sativus L.). — J. Appl. Bot. Food Qual. 85: 91–96, 2012.

    CAS  Google Scholar 

  • Omoto, E., Taniguchi, M., Miyake, H.: Effects of salinity stress on the structure of bundle sheath and mesophyll chloroplasts in NAD-malic enzyme and PCK type C4 plants. — Plant Prod. Sci. 13: 169–176, 2010.

    Article  CAS  Google Scholar 

  • Pan, J., Lin, S., Woodbury, N.W.: Bacteriochlorophyll excitedstate quenching pathways in bacterial reaction centers with the primary donor oxidized. — J. Phys. Chem. B. 116: 2014–2022, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Pan, X., Lada, R.R., Caldwell, C.D., Falk, K.C.: Water-stress and N-nutrition effects on photosynthesis and growth of Brassica carinata. — Photosynthetica 49: 309–315, 2011.

    Article  CAS  Google Scholar 

  • Parida, A.K., Dagaonkar, V.S., Phalak, M.S. et al.: Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. — Plant Biotechnol. Rep. 1: 37–48, 2007.

    Article  Google Scholar 

  • Parida, A.K., Mittra, B., Das, A.B. et al.: High salinity reduces the content of a highly abundant 23-kDa protein of the mangrove Bruguiera parviflora. — Planta 221: 135–140, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Patra, B., Roy, S., Richter, A., Majumder, A.L.: Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methlated inositol. — Protoplasma 245: 143–152, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Percival, G.C.: The use of chlorophyll fluorescence to identify chemical and environmental stress in leaf tissue of three oak (Quercus) species. — J. Arboric. 31: 215–227, 2005.

    Google Scholar 

  • Peri, P., Martinez, P.G., Lencinas, M.V.: Photosynthetic response to different light intensities and water status of two main Nothofagus species of southern Patagonian forest, Argentina. — J. Forest. Sci. 55: 101–111, 2009.

    Google Scholar 

  • Perveen, S., Shahbaz, M., Ashraf, M.: Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. — Pak. J. Bot. 42: 3073–3081, 2010.

    CAS  Google Scholar 

  • Pettigrew, W., Meredith, J.W.: Leaf gas exchange parameters vary among cotton genotypes. — Crop Sci. 34: 700–705, 1994.

    Article  Google Scholar 

  • Piao, S., Ciais, P., Friedlingstein, P. et al.: Net carbon dioxide losses of northern ecosystems in response to autumn warming. — Nature 451: 49–52, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro, H.A., Silva, J.V., Endres, L. et al.: Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. — Ind. Crop. Prod. 27: 385–392, 2008.

    Article  CAS  Google Scholar 

  • Pirzad, A., Shakiba, M.R., Zehtab-Salmasi, S. et al.: Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. — J. Med. Plants Res. 5: 2483–2488, 2011.

    CAS  Google Scholar 

  • Poetsch, W., Hermans, J., Westhoff, P.: Multiple cDNAs of phosphoenolpyruvate carboxylase in the C4 dicot Flaveria trinervia. — FEBS Lett. 292: 133–136, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Popovic, R., Dewez, D., Juneau, P.: Application of chlorophyll fluorescence in ecotoxicology: heavy metals, herbicides, and air pollutants. In: DeEll, J.R., Toivonen, P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 151–184. Kluwer Academic Publishers, Boston 2003.

    Chapter  Google Scholar 

  • Rahnama, A., Poustini, K., Tavakkol-Afshari, R., Tavakoli, A.: Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. — Int. J. Biol. Life Sci. 6: 216–221, 2010.

    Google Scholar 

  • Raines, C.A.: Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. — Plant Cell Environ. 29: 331–339, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Raines, C.A.: Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. — Plant Physiol. 155: 36–42, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Rawson, H.M., Richards, R.A., Munns, R.: An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. — Aust. J. Agr. Res. 39: 759–772, 1988.

    Article  Google Scholar 

  • Raza, S.H., Athar, H.R., Ashraf, M.: Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. — Pak. J. Bot. 38: 341–351, 2006.

    Google Scholar 

  • Raza, S.H., Athar, H.R., Ashraf, M., Hameed, A.: GB-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. — Environ. Exp. Bot. 60: 368–378, 2007.

    Article  CAS  Google Scholar 

  • Reda, F., Mandoura, H.M.H.: Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. — Int. J. Acad. Res. 3: 108–115, 2011.

    Google Scholar 

  • Rexroth, S., Mullineaux, C.W., Ellinger, D. et al.: The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. — Plant Cell 23: 2379–2390, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Ristic, Z., Bukovnik, U., Momčilović, I. et al.: Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. — J. Plant Physiol. 165: 192–202, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S.P., Downton, W.J.S., Millhouse, J.A.: Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. — Plant Physiol. 73: 238–242, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M.E., Noble, C.L.: Variation in growth and ion accumulation between two selected populations of Trifolium repens L. differing in salt tolerance. — Plant Soil 146: 131–136, 1992.

    Article  CAS  Google Scholar 

  • Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Rokka, A., Aro, E.M., Herrmann, R.G. et al.: Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. — Plant Physiol. 123: 1525–1536, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Romero, L., Belakbir, A., Ragala, L., Ruiz, J.M.: Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). — Soil Sci. Plant Nutr. 43: 855–862, 1997.

    Article  Google Scholar 

  • Ruan, C., Shao, H., da Silva, J.A.T.: A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering. — Crit. Rev. Biotechnol. 32: 1–21, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Ruban, A.V., Horton, P.: Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. — Aust. J. Plant Physiol. 22: 221–230, 1995.

    Article  CAS  Google Scholar 

  • Ruban, A.V., Pascal, A.A., Robert, B., Horton, P.: Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting. — J. Biol. Chem. 277: 7785–7789, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sabir, P., Ashraf, M., Hussain, M., Jamil, A.: Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. — Pak. J. Bot. 41: 2957–2964, 2009.

    CAS  Google Scholar 

  • Sade, N., Gebretsadik, M., Seligmann, R. et al.: The role of tobacco aquaporin in improving water use efficiency, hydraulic conductivity and yield production under salt stress. — Plant Physiol. 152: 245–254, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Sage, R.F., Zhu, X.L.: Exploiting the engine of C4 photosynthesis. — J. Exp. Bot. 62: 2989–3000, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Saibo, N.J.M., Lourenço, T., Oliveira, M.M.: Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. — Ann. Bot. 103: 609–623, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Sairam, R.K., Rao, V.K., Srivastava, G.C.: Differential response of wheat genotype to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. — Plant Sci. 163: 1037–1046, 2002.

    Article  CAS  Google Scholar 

  • Sakamoto, A., Murata, N.: The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. — Plant Cell Environ. 25: 163–171, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Saleem, A., Ashraf, M., Akram, N.A.: Salt (NaCl)-induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). — J. Agron. Crop Sci. 197: 202–213, 2011.

    Article  CAS  Google Scholar 

  • Salvucci, M.E., Crafts-Brandner, S.J.: Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. — Plant Physiol. 134: 1460–1470, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Santos, C., Azevedo H., Caldeira, G.: In situ and in vitro senescence induced by KCI stress: nutritional imbalance, lipid peroxidatin and antioxidant metabolism. — J. Exp. Bot. 52: 351–360, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Santos, C., Caldeira, G.: Comparative responses of Helianthus annuus plants and calli exposed to NaCl: I. Growth rate and osmotic regulation in intact plants and calli. — J. Plant Physiol. 155: 769–777, 1999.

    Article  Google Scholar 

  • Santos, C.V.: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. — Sci. Hort. 103: 93–99, 2004.

    Article  CAS  Google Scholar 

  • Saravanavel, R., Ranganathan, R., Anantharaman, P.: Effect of sodium chloride on photosynthetic pigments and photosynthetic characteristics of Avicennia officinalis seedlings. — Recent Res. Sci. Technol. 3: 177–180, 2011.

    CAS  Google Scholar 

  • Sausen, T.L., Rosa, L.M.G.: Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae) under soil water stress conditions. — Acta Bot. Bras. 24: 648–654, 2010.

    Article  Google Scholar 

  • Schaeffer, H.J., Forsthoefel, N.R., Cushman, J.C.: Identification of enhancer and silencer regions involved in salt-responsive expression of crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. — Plant Mol. Biol. 28: 205–218, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Schrader, S.M., Wise, R.R., Wacholtz, W.F. et al.: Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. — Plant Cell Environ. 27: 725–735, 2004.

    Article  CAS  Google Scholar 

  • Seemann, J.R., Critchley, C.: Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt sensitive species. Phaseolus vulgaris L. — Plant Physiol. 82: 555–560, 1985.

    Article  Google Scholar 

  • Seemann, J.R., Sharkey, T.D.: The effect of abscisic acid and other inhibitors on photosynthetic capacity and the biochemistry of CO2 assimilation. — Plant Physiol. 84: 696–700, 1982.

    Article  Google Scholar 

  • Shahbaz, M., Ashraf, M.: Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. — Pak. J. Bot. 39: 513–522, 2007.

    Google Scholar 

  • Sharkey, T.D.: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. — Plant Cell Environ. 28: 269–277, 2005.

    Article  CAS  Google Scholar 

  • Sharkey, T.D., Zhang, R.: High temperature effects on electron and proton circuits of photosynthesis. — J. Integr. Plant Biol. 52: 712–722, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Shou, H., Bordallo, P., Wang, K.: Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. — J. Exp. Bot. 55: 1013–1019, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sikuku, P.A., Netondo, G.W., Onyango, J.C., Musyimi, D.M.: Chlorophyll fluorescence, protein and chlorophyll content of three NERICA rainfed rice varieties under varying irrigation regimes. — ARPN J. Agr. Biol. Sci. 5: 19–25, 2010.

    Google Scholar 

  • Singh, C.R., Curtis, C., Yamamoto, Y. et al.: eIF5 is critical for the integrity of the scanning preinitiation complex and accurate control of GCN4 translation. — Mol. Cell Biol. 25: 5480–5491, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Skotnica, J., Matoušková, M., Nauš, J. et al.: Thermoluminescence and fluorescence study of changes in photosystem II photochemistry in desiccating barley leaves. — Photosynth. Res. 65: 29–40, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.A., Ardelt, B.K., Huner, N.P.A. et al.: Identification and partial characterization of the denaturation transition of the light harvesting complex-II of spinach chloroplast membranes. — Plant Physiol. 90: 492–499, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.A., Low, P.S.: Identification and partial characterization of the denaturation transition of the photosystem-II reaction centre of spinach chloroplast membranes. — Plant Physiol. 90: 575–581, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Sohn, S.O., Back, K.: Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. — Biol. Plant. 51: 340–342, 2007.

    Article  CAS  Google Scholar 

  • Srivastava, S., Fristensky, B., Kav, N.N.V.: Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. — Plant Cell Physiol. 45: 1320–1324, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Taiz, L., Zeiger, E.: Plant Physiology. 5th Ed. Sinauer Associates, Sunderland 2010.

    Google Scholar 

  • Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M., Honda, H.: Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. — Planta 211: 265–274, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Sano, T., Tamaoki, M. et al.: Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. — Plant Physiol. 138: 2337–2343, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tang, D., Qian, H., Zhao, L. et al.: Transgenic tobacco plants expressing BoRS1 gene from Brassica oleracea var. acephala show enhanced tolerance to water stress. — J. Biosci. 30: 647–655, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Y., Wen, X., Lu, Q., Yang, Z., Cheng, Z., Lu, C.: Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. — Plant Physiol. 143: 629–638, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Taub, D.: Effects of rising atmospheric concentrations of carbon dioxide on plants. — Nature Educ. Knowl. 1: 21, 2010.

    Google Scholar 

  • Tavakoli, H., Mohtasebi, S.S.M., Jafari, A., Galedar, M.N.: Some engineering properties of barley straw. — Appl. Eng. Agr. 25: 627–633, 2009.

    Google Scholar 

  • Tayefi-Nasrabadi, H., Dehghan, G., Daeihassani, B. et al.: Some biochemical properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L.) cultivars. — Afr. J. Biotechnol. 10: 751–763, 2011.

    CAS  Google Scholar 

  • Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J., Hirt, H.: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. — Mol. Cell 15: 141–152, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Tewari, A.K., Tripathy, B.C.: Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. — Plant Physiol. 117: 851–858, 1998.

    Article  CAS  Google Scholar 

  • Tewari, A.K., Tripathy, B.C.: Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). — Planta 208: 431–437, 1999.

    Article  CAS  Google Scholar 

  • Thornton, M.K., Malik, N.J., Dwelle, R.B.: Relationship between leaf gas exchange characteristics and productivity of potato clones grown at different temperatures. — Amer. Potato J. 73: 63–77, 1996.

    Article  Google Scholar 

  • Toth, S., Nagy, V., Puthur, J.T. et al.: The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. — Plant Physiol. 156: 382–392, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida, H., Tamai, T., Fukayama, H. et al.: High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. — Plant Cell Physiol. 42: 138–145, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Van Camp, W., Capiau, K., Van Montagu, M., Inzé, D., Slooten, L.: Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. — Plant Physiol. 112: 1703–1714, 1996.

    Article  PubMed  Google Scholar 

  • Van Rensburg, L., Krüger, G.H.J., Eggenberg, P., Strasser, R.J.: Can screening criteria for drought resistance in Nicotiana tabacum L. be derived from the polyphasic rise of the chlorophyll a fluorescence transient (OJIP)? — S. Afr. J. Bot. 62: 337–341, 1996.

    Google Scholar 

  • Várkonyi, Z., Nagy, G., Lambrev, P. et al.: Effect of phosphorylation on the thermal and light stability of the thylakoid membranes. — Photosynth. Res. 99: 161–171, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Vaz, J., Sharma, P.K.: Relationship between xanthophy cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. — Indian J. Exp. Bot. 49: 60–67, 2011.

    Google Scholar 

  • Veiga, T.A.M., Silva, S.O.C.: Inhibition of photophosphorylation and electron transport chain in thylakoids by lasiodiplodin, a natural product from Botryosphaeria rhodina. — J. Agr. Food Chem. 55: 4217–4221, 2007.

    Article  CAS  Google Scholar 

  • Velikova, V., Sharkey, T.D., Loreto, F.: Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. — Plant Signal. Behav. 7: 139–141, 2012.

    Article  PubMed  Google Scholar 

  • Vener, A.V., Rokka, A., Fulgosi, H., Andersson, B., Herrmann, R.G.: A cyclophilin regulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts. — Biochemistry 38: 14955–14965, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Verma, S., Mishra, S.N.: Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. — J. Plant Physiol. 162: 669–677, 2005.

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer, S., Farquhar, G.D.: Effects of partial defoliation, changes of irradiance during growth at enhanced p(CO2) on the photosynthetic capacity of leaves of Phaseolus vulgaris L. — Planta 160: 320–329, 1984.

    Article  Google Scholar 

  • Walker, D.: Fluorescence. — In: Walker, D. (ed.): The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. Pp. 17–46. Oxgraphics, Univ. Sheffield, Sheffield 1987.

    Google Scholar 

  • Wang, D., Portis, A.R. Jr.: A novel nucleus-encoded chloroplast protein, PIFI, is involved in NAD(P) H dehydrogenase complex-mediated chlororespiratory electron transport in Arabidopsis. — Plant Physiol. 144: 1742–1752, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L.J., Fan, L., Loescher, W. et al.: Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. — BMC Plant Biol. 10: 34–44, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W-H., Yi, X-Q., Han, A-D. et al.: Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. — J. Exp. Bot. 63: 177–190, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Whitmarsh, A.J., Davis, R.J.: Regulation of transcription factor function by phosphorylation. — Cell. Mol. Life Sci. 57: 1172–1183, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Winicov, I., Seemann, J.R.: Expression of genes for photosynthesis and the relationship to salt tolerance of alfalfa (Medicago sativa) cells. — Plant Cell Physiol. 31: 1155–1161, 1990.

    CAS  Google Scholar 

  • Wu, Q.S., Zou, N.Y.: Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. — Not. Bot. Hort. Agrobot. Cluj. 37: 133–138, 2009.

    Google Scholar 

  • Wu, X.X., Ding, H., Chen, J. et al.: Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. — Afr. J. Biotechnol. 9: 7837–7846, 2010.

    CAS  Google Scholar 

  • Xie, X.J., Shen, S.H.H., Li, Y.X. et al.: Effect of photosynthetic characteristic and dry matter accumulation of rice under high temperature at heading stage. — Afr. J. Agr. Res. 6: 1931–1940, 2011.

    Google Scholar 

  • Xu, Q.Z., Huang, B.R.: Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. — Crop Sci. 41: 127–133, 2001.

    Article  Google Scholar 

  • Xu, W., Zhou, Y., Chollet, R.: Identification and expression of a soybean nodule-enhanced PEP-carboxylase kinase gene (NEPpcK) that shows striking up-/down-regulation in vivo. — Plant J. 34: 441–452, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X.X., Shao, H.B., Ma, Y.Y. et al.: Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. — Crit. Rev. Biotechnol. 30: 222–230, 2010.

    Article  CAS  Google Scholar 

  • Xu, Z., Zhou, G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. — J. Exp. Bot. 59: 3317–3325, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Xue, G.P., McIntyre, C.L., Glassop, D., Shorter, R.: Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. — Plant Mol. Biol. 67: 197–214, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Yan, J., He, C., Wang, J. et al.: Overexpression of the Arabidopsis 14-3-3 protein GF14 in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. — Plant Cell Physiol. 45: 1007–1014, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Yan, K., Chen, P., Shao, H. et al.: Effects of short-term high temperature on photosynthesis and photosystem II performance in Sorghum. — J. Agron. Crop Sci. 97: 400–408, 2011.

    Article  CAS  Google Scholar 

  • Yanagisawa, S., Sheen, J.: Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. — Plant Cell 10: 75–89, 1998.

    PubMed  CAS  Google Scholar 

  • Yang, J.Y., Zheng, W., Tian, Y. et al.: Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. — Photosynthetica 49: 275–284, 2011.

    Article  CAS  Google Scholar 

  • Yang, X., Liang, Z., Lu, C.: Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. — Plant Physiol. 138: 2299–2309, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Yildiz, M., Terzi, H.: Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. — Biologia 63: 521–525, 2008.

    Article  CAS  Google Scholar 

  • Yu, H., Chena, X., Hong, Y.Y. et al.: Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. — Plant Cell 20: 1134–1151, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zeid, I.M.: Trehalose as osmoprotectant for maize under salinity-induced stress research. — J. Agr. Biol. Sci. 5: 613–622, 2009.

    CAS  Google Scholar 

  • Zhang, H.X., Hodson, J.N., Williams, J.P., Blumwald, E.: Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. — Proc. Natl. Acad. Sci. USA 98: 12832–12836, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Jia, W., Yang, J., Ismail, A.M.: Role of ABA in integrating plant responses to drought and salt stresses. — Field Crops Res. 97: 111–119, 2006.

    Article  Google Scholar 

  • Zhang, L., Zhang, Z., Gao, H. et al.: Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. — Physiol. Plant. 143: 396–407, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Klessig, D.F.: MAPK cascades in plant defense signaling. — Trends Plant Sci. 6: 520–527, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Wollenweber, B., Jiang, D. et al.: Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP 9, a bZIP transcription factor. — J. Exp. Bot. 59: 839–848, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Guo, S., Chen, S. et al.: Expression of yeast YAP1 in transgenic Arabidopsis results in increased salt tolerance. — J. Plant Biol. 52: 56–64, 2009a.

    Article  CAS  Google Scholar 

  • Zhao, X., Tan, H.J., Liu, B. et al.: Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. — Plant Cell Tiss. Organ Cult. 98: 97–103, 2009b.

    Article  CAS  Google Scholar 

  • Zhu, B., Xiong, A.S., Peng, R.H. et al.: Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. — BMB Rep. 41: 382–387, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ziaf, K., Amjad, M., Pervez, M.A. et al.: Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). — Pak. J. Bot. 41: 1797–1809, 2009.

    CAS  Google Scholar 

  • Zlatev, Z.: Drought-induced changes in chlorophyll fluorescence of young wheat plant. — Biotechnology 23: 437–441, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, M., Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190 (2013). https://doi.org/10.1007/s11099-013-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0021-6

Additional key words

Navigation