Skip to main content

Assessing the Genetic Stability of In Vitro Raised Plants

  • Chapter
  • First Online:
Commercial Scale Tissue Culture for Horticulture and Plantation Crops

Abstract

Stem cuttings-based vegetative propagation is considered to be genetically clonal in nature; but due to lower rooting abilities in most of the plant species, it has become much difficult to propagate the commercial/important plants through stem cuttings. Because of this limitation; in vitro micropropagation of medicinal and commercial plants has gained popularity. But during in vitro culture, the explants are cultured on artificial media with synthetic growth substances and treated with artificial hormones, there are chances of genetic changes as the cells of callus are fragile in nature leading to the production of genetical variants. Hence, it has become a mandatory step in tissue culture-based propagation to confirm the genetic fidelity of regenerated plantlets using different types of markers (phenotypical, biochemical, physiological, and molecular markers). The biochemical and physiological markers are not much reliable as one has to wait for regenerated plants to gain maturity to express biochemical and physiological characters. Whereas the molecular markers-based genetic stability assessment is considered as an advanced, accurate, and reliable method. Moreover, it can be carried soon after hardening or acclimatization of micropropagated plantlets. This chapter deals with the use of different kinds of conventional and advanced molecular markers which are being utilized for assessing the genetic fidelity of commercially propagated in vitro plantlets of horticulture and plantation crops such as coffee, tea, blueberry, banana, papaya, sweet potato, mulberry, pineapple, date, grapes, cocoa, arecanut, cashewnut, sugarcane, potato, eucalyptus, poplar, pine, rubber tree, cassava, and oil palm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolinejad, R., A. Shekafandeh, A. Jowkar, A. Gharaghani, and A. Alemzadeh. 2020. Indirect regeneration of Ficus carica by the TCL technique and genetic fidelity evaluation of the regenerated plants using flow cytometry and ISSR. Plant Cell, Tissue and Organ Culture 143 (1): 131–144.

    Article  CAS  Google Scholar 

  • Adeniran, A.A., M.A. Sonibare, G.H. Rajacharya, and S. Kumar. 2018. Assessment of genetic fidelity of Dioscorea bulbifera L. and Dioscorea hirtiflora Benth. and medicinal bioactivity produced from the induced tuberous roots. Plant Cell, Tissue and Organ Culture 132: 343–357. https://doi.org/10.1007/s11240-017-1334-0.

    Article  CAS  Google Scholar 

  • Agarwal, M., N. Shrivastava, and H. Padh. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27 (4): 617–631.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, N., S.B. Javed, M.I. Khan, and M. Anis. 2013. Rapid plant regeneration and analysis of genetic fidelity in micropropagated plants of Vitex trifolia: An important medicinal plant. Acta Physiologiae Plantarum 35 (8): 2493–2500.

    Article  CAS  Google Scholar 

  • Ahmed, M.R., M. Anis, A.A. Alatar, and M. Faisal. 2017. In vitro clonal propagation and evaluation of genetic fidelity using RAPD and ISSR marker in micropropagated plants of Cassia alata L.: a potential medicinal plant. Agroforestry Systems 91 (4): 637–647.

    Article  Google Scholar 

  • Ajithan, C., V. Vasudevan, D. Sathish, S. Sathish, V. Krishnan, and M. Manickavasagam. 2019. The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell, Tissue and Organ Culture 139 (3): 547–561.

    Article  CAS  Google Scholar 

  • Akagi, H., Y. Yokozeki, A. Inagaki, A. Nakamura, and T. Fujimura. 1996. A co-dominant DNA marker closely linked to the rice nuclear restorer gene, Rf-1, identified with inter-SSR fingerprinting. Genome 39: 1205–1209.

    Article  CAS  PubMed  Google Scholar 

  • Akin-Idowu, P.E., D.O. Ibitoye, and O.T. Ademoyegun. 2009. Tissue culture as a plant production technique for horticultural crops. African Journal of Biotechnology 8 (16): 3782–3788.

    Google Scholar 

  • Alatar, A.A., M. Faisal, E.M. Abdel-Salam, T. Canto, Q. Saquib, S.B. Javed, and A.A. Al-Khedhairy. 2017. Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods. Saudi Journal of Biological Sciences 24 (6): 1430–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alatar, A.A., M. Faisal, A.K. Hegazy, H.A. Alwathnani, and M.K. Okla. 2015. Clonal in vitro multiplication of grey mangrove and assessment of genetic fidelity using single primer amplification reaction (SPAR) methods. Biotechnology and Biotechnological Equipment 29 (6): 1069–1074.

    Article  CAS  Google Scholar 

  • Alizadeh, M., H. Krishna, M. Eftekhari, M. Modareskia, and M. Modareskia. 2015. Assessment of clonal fidelity in micropropagated horticultural plants. Journal of Chemical and Pharmaceutical Research 7 (12): 977–990.

    CAS  Google Scholar 

  • Alizadeh, M., and S. Singh. 2009. Molecular assessment of clonal fidelity in micropropagated grape (Vitis spp.) rootstock genotypes using RAPD and ISSR markers. Iranian Journal of Biotechnology 7 (1): 37–44.

    CAS  Google Scholar 

  • Al-Qurainy, F., M. Nadeem, S. Khan, S. Alansi, M. Tarroum, A.A. Al-Ameri, A.R. Gaafar, and A. Alshameri. 2018. Rapid plant regeneration, validation of genetic integrity by ISSR markers and conservation of Reseda pentagyna an endemic plant growing in Saudi Arabia. Saudi Journal of Biological Science 25 (1): 111–116.

    Article  CAS  Google Scholar 

  • Amom, T., and P. Nongdam. 2017. The use of molecular marker methods in plants: A review. International Journal of Current Research and Review 9 (17): 1–8.

    CAS  Google Scholar 

  • Ashwini, A.M., H. Ramakrishnaiah, S.H. Manohar, and M. Majumdar. 2015. An efficient multiple shoot induction and genetic fidelity assessment of Exacum bicolor Roxb., an endemic and endangered medicinal plant. In Vitro Cellular & Developmental Biology 51 (6): 659–668.

    Article  CAS  Google Scholar 

  • Asthana, P., V.S. Jaiswal, and U. Jaiswal. 2011. Micropropagation of Sapindus trifoliatus L. and assessment of genetic fidelity of micropropagated plants using RAPD analysis. Acta Physiologiae Plantarum 33 (5): 1821–1829.

    Article  CAS  Google Scholar 

  • Babu, G.A., A. Vinoth, and R. Ravindhran. 2018. Direct shoot regeneration and genetic fidelity analysis in finger millet using ISSR markers. Plant Cell, Tissue and Organ Culture 132 (1): 157–164.

    Article  CAS  Google Scholar 

  • Babu, K.N., T.E. Sheeja, D. Minoo, M.K. Rajesh, K. Samsudeen, E.J. Suraby, and I.P.V. Kumar. 2021. Random amplified polymorphic DNA (RAPD) and derived techniques. In Molecular plant taxonomy, 219–247. New York, NY: Humana.

    Chapter  Google Scholar 

  • Bahmankar, M., S.M.M. Mortazavian, and M. Tohidfar. 2017. Chemical compositions, somatic embryogenesis, and somaclonal variation in cumin. BioMed Research International 2017: 1–15.

    Article  CAS  Google Scholar 

  • Bandupriya, H.D.D., S.A.C.N. Perera, C.S. Ranasinghe, C. Yalegama, and H.P.D.T. Hewapathirana. 2021. Physiological, biochemical and molecular evaluation of micropropagated and seed-grown coconut (Cocos nucifera L.) palms. Trees 36: 127–138.

    Article  CAS  Google Scholar 

  • Behera, B., P. Sinha, S. Gouda, S.K. Rath, D.P. Barik, P.K. Jena, and S.K. Naik. 2018. In vitro propagation by axillary shoot proliferation, assessment of antioxidant activity, and genetic fidelity of micropropagated Paederia foetida L. Journal of Applied Biomaterials & Biomechanics 6 (2): 41–49.

    CAS  Google Scholar 

  • Bekheet, S.A., A.M.M. Gabr, A.A. Reda, and M.K. El Bahr. 2015. Micropropagation and assessment of genetic stability of In Vitro raised jojoba (Simmondsia chinensis Link.) plants using SCoT and ISSR markers. Plant Tissue Culture and Biotechnology 25 (2): 165–179.

    Article  Google Scholar 

  • Bhagyawant, S.S. 2016. RAPD-SCAR markers: An interface tool for authentication of traits. Journal of Biosciences and Medicines 4 (01): 1.

    Article  CAS  Google Scholar 

  • Bhatia, R., K.P. Singh, T.R. Sharma, and T. Jhang. 2011. Evaluation of the genetic fidelity of in vitro-propagated gerbera (Gerbera jamesonii Bolus) using DNA-based markers. Plant Cell, Tissue and Organ Culture 104 (1): 131–135.

    Article  Google Scholar 

  • Bhattacharya, E., S.B. Dandin, and S.A. Ranade. 2005. Single primer amplification methods reveal exotic and indigenous mulberry varieties are similarly diverse. Journal of Biosciences 30: 669–677. https://doi.org/10.1007/BF02703567.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya, P., V. Kumar, and J. Van Staden. 2017a. Assessment of genetic stability amongst micropropagated Ansellia africana, a vulnerable medicinal orchid species of Africa using SCoT markers. South African Journal of Botany 108: 294–302.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., S. Kumaria, B. Bose, P. Paul, and P. Tandon. 2017b. Evaluation of genetic stability and analysis of phytomedicinal potential in micropropagated plants of Rumex nepalensis–A medicinally important source of pharmaceutical biomolecules. Journal of Applied Research on Medicinal and Aromatic Plants 6: 80–91.

    Article  Google Scholar 

  • Bhattacharyya, P., S. Kumaria, N. Job, and P. Tandon. 2015. Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: A threatened, medicinal orchid. Plant Cell, Tissue and Organ Culture 122 (3): 535–550.

    Article  CAS  Google Scholar 

  • Bobadilla, L.R., A. Cenci, F. Georget, B. Bertrand, G. Camayo, and E. Dechamp. 2013. High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PLoS One 8 (2): e56372.

    Article  CAS  Google Scholar 

  • Brown, P.T., E. Göbel, and H. Lörz. 1991. RFLP analysis of Zea mays callus cultures and their regenerated plants. Theoretical and Applied Genetics 81 (2): 227–232. https://doi.org/10.1007/BF00215727.

    Article  CAS  PubMed  Google Scholar 

  • Carra, A., M. Sajeva, and L. Abbate. 2012. In vitro plant regeneration of caper (Capparis spinosa L.) from floral explants and genetic stability of regenerants. Plant Cell, Tissue and Organ Culture 109: 373–381. https://doi.org/10.1007/s11240-011-0102-9.

    Article  Google Scholar 

  • Cecchini, E., L. Natali, A. Cavallini, and M. Durante. 1992. DNA variations in regenerated plants of pea (Pisum sativum L.). Theoretical and Applied Genetics 84: 874–879.

    Article  CAS  PubMed  Google Scholar 

  • Chalageri, G., and U.V. Babu. 2012. In vitro plant regeneration via petiole callus of Viola patrinii and genetic fidelity assessment using RAPD markers. Turkish Journal of Botany 36 (4): 358–368.

    CAS  Google Scholar 

  • Chatenet, M., C. Delage, M. Ripolles, M. Irey, B.L.E. Lockhart, and P. Rott. 2001. Detection of sugarcane yellow leaf virus in quarantine and production of virus-free sugarcane by apical meristem culture. Plant Disease 85 (11): 1177–1180.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., H. Yao, J. Han, C. Liu, J. Song, L. Shi, Y. Zhu, X. Ma, T. Gao, X. Pang, K. Luo, Y. Li, X. Li, X. Jia, Y. Lin, and C. Leon. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5 (1): e8613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chhajer, S., and R.K. Kalia. 2017. Seasonal and micro-environmental factors controlling clonal propagation of mature trees of marwar teak [Tecomella undulata (Sm.) Seem]. Acta Physiologiae Plantarum 39 (2): 60.

    Article  CAS  Google Scholar 

  • Chirumamilla, P., C. Gopu, P. Jogam, and S. Taduri. 2021. Highly efficient rapid micropropagation and assessment of genetic fidelity of regenerants by ISSR and SCoT markers of Solanum khasianum Clarke. Plant Cell, Tissue and Organ Culture 144: 397–407.

    Article  CAS  Google Scholar 

  • Chittora, M. 2018. Assessment of genetic fidelity of long term micropropagated shoot cultures of Achras sapota L. var.‘Cricket Ball’as assessed by RAPD and ISSR markers. Indian Journal of Biotechnology 17: 492–495.

    CAS  Google Scholar 

  • Collard, B.C.Y., and D.J. Mackill. 2009. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter 27: 86–89.

    Article  CAS  Google Scholar 

  • Da Silva, S.C., M.V.F. Lemos, and J.T. Ayala Osuna. 2000. RAPD marker use for improving resistance to Helicoverpa zea in corn. Maydica 45 (4): 289–294.

    Google Scholar 

  • Dangi, B., V. Khurana-Kaul, S.L. Kothari, and S. Kachhwaha. 2014. Micropropagtion of Terminalia bellerica from nodal explants of mature tree and assessment of genetic fidelity using ISSR and RAPD markers. Physiology and Molecular Biology of Plants 20 (4): 509–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vere, N., T.C.G. Rich, S.A. Trinder, and C. Long. 2015. DNA barcoding for plants. In Plant genotyping. Methods in molecular biology (methods and protocols), ed. J. Batley, vol. vol 1245. New York, NY: Humana Press. https://doi.org/10.1007/978-1-4939-1966-6_8.

    Chapter  Google Scholar 

  • Devarumath, R., S. Nandy, V. Rani, S. Marimuthu, N.R.A.P.D. Muraleedharan, and S. Raina. 2002. RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Reports 21 (2): 166–173.

    Article  CAS  Google Scholar 

  • Devi, S.P., S. Kumaria, S.R. Rao, and P. Tandon. 2014. Single primer amplification reaction (SPAR) methods reveal subsequent increase in genetic variations in micropropagated plants of Nepenthes khasiana Hook. f. maintained for three consecutive regenerations. Gene 538 (1): 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Dewir, Y.H., D. Chakrabarty, E.J. Hahn, and K.Y. Paek. 2005. Reversion of inflorescence development in Euphorbia milii and its application to large-scale micropropagation in an air-lift bioreactor. The Journal of Horticultural Science and Biotechnology 80: 581–587.

    Article  CAS  Google Scholar 

  • Dhiman, N., K. Devi, and A. Bhattacharya. 2021. Development of low cost micropropagation protocol for Nardostachys jatamansi: A critically endangered medicinal herb of Himalayas. South African Journal of Botany 140: 468–477.

    Article  CAS  Google Scholar 

  • Dilkalal, A., A.S. Annapurna, and T.G. Umesh. 2021. In vitro regeneration, antioxidant potential, and genetic fidelity analysis of Asystasia gangetica (L.) T. Anderson. In Vitro Cellular & Developmental Biology 57 (3): 447–459.

    Article  CAS  Google Scholar 

  • El-Dougdoug, K.A., and M.M. El-Shamy. 2011. Management of viral diseases in banana using certified and virus tested plant material. African Journal of Microbiology Research 5 (32): 5923–5932.

    CAS  Google Scholar 

  • Erişen, S., G. Kurt-Gür, and H. Servi. 2020. In vitro propagation of Salvia sclarea L. by meta-Topolin, and assessment of genetic stability and secondary metabolite profiling of micropropagated plants. Industrial Crops and Products 157: 112892.

    Article  CAS  Google Scholar 

  • Faisal, M., N. Ahmad, M. Anis, A.A. Alatar, and A.A. Qahtan. 2018a. Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems. Saudi Journal of Biological Sciences 25 (2): 273–277.

    Article  CAS  PubMed  Google Scholar 

  • Faisal, M., A.A. Alatar, M.A. El-Sheikh, E.M. Abdel-Salam, and A.A. Qahtan. 2018b. Thidiazuron induced in vitro morphogenesis for sustainable supply of genetically true quality plantlets of Brahmi. Industrial Crops and Products 118: 173–179.

    Article  CAS  Google Scholar 

  • Faisal, M., A.A. Alatar, A.K. Hegazy, S.A. Alharbi, M. El-Sheikh, and M.K. Okla. 2014. Thidiazuron induced in vitro multiplication of Mentha arvensis and evaluation of genetic stability by flow cytometry and molecular markers. Industrial Crops and Products 62: 100–106.

    Article  CAS  Google Scholar 

  • Fatima, N., N. Ahmad, I. Ahmad, and M. Anis. 2015. Interactive effects of growth regulators, carbon sources, pH on plant regeneration and assessment of genetic fidelity using single primer amplification reaction (SPARS) techniques in Withania somnifera L. Applied Biochemistry and Biotechnology 177 (1): 118–136.

    Article  CAS  PubMed  Google Scholar 

  • Feau, N., T.D. Ramsfield, C.L. Myrholm, B. Tomm, H.F. Cerezke, A. Benowicz, and R.C. Hamelin. 2021. DNA-barcoding identification of Dothistroma septosporum on Pinus contorta var. latifolia, P. banksiana and their hybrid in northern Alberta, Canada. Canadian Journal of Plant Pathology 43 (3): 472–479.

    Article  CAS  Google Scholar 

  • Fernandez, M., A. Figueiras, and C. Benito. 2002. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics 104 (5): 845–851.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, C.F., A. Borém, G.A. Carvalho, S. Nietsche, T.J. Paula, E.G. Barros, and M.A. Moreira. 2000. Inheritance of angular leaf spot resistance in common bean and identification of a RAPD marker linked to a resistance gene. Crop Science 40 (4): 1130–1133.

    Article  CAS  Google Scholar 

  • Fiuk, A., P.T. Bednarek, and J.J. Rybczyński. 2010. Flow cytometry, HPLC-RP, and metAFLP analyses to assess genetic variability in somatic embryo-derived plantlets of Gentiana pannonica Scop. Plant Molecular Biology Reporter 28 (3): 413–420.

    Article  CAS  Google Scholar 

  • Fu, Y.M., W.M. Jiang, and C.X. Fu. 2011. Identification of species within Tetrastigma (Miq.) Planch. (Vitaceae) based on DNA barcoding techniques. Journal of Systematics and Evolution 49 (3): 237–245.

    Article  Google Scholar 

  • Gantait, S., S. Debnath, and Md. Nasim Ali. 2014. Genomic profile of the plants with pharmaceutical value. 3 Biotech 4: 563–578. https://doi.org/10.1007/s13205-014-0218-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, X., D. Yang, D. Cao, M. Ao, and X. Sui. 2010. In vitro micropropagation of Freesia hybrida and the assessment of genetic and epigenetic stability in regenerated plantlets. Journal of Plant Growth Regulation 29: 257–267.

    Article  CAS  Google Scholar 

  • Garcia, G.R., K. Quiroz, B. Carrasco, and P. Caligari. 2010. Plant tissue culture: Currentstatus, opportunities and challenges. Cien. Inv. Agr. 37 (3): 5–30.

    Article  Google Scholar 

  • Garcia, C., A.A. Furtado de Almeida, and M. Costa. 2019. Abnormalities in somatic embryogenesis caused by 2,4-D: An overview. Plant Cell, Tissue and Organ Culture 137: 193–212. https://doi.org/10.1007/s11240-019-01569-8.

    Article  CAS  Google Scholar 

  • Gautam, N., and A. Bhattacharya. 2021. Molecular marker based assessment of genetic homogeneity within the in vitro regenerated plants of Crocus sativus L.–a globally important high value spice crop. South African Journal of Botany 140: 461–467.

    Article  CAS  Google Scholar 

  • Gautam, R., R.K. Meena, G.K. Rohela, N.K. Singh, and P. Shukla. 2021. Harnessing the potential of modern omics tools in plant tissue culture. In Omics technologies for sustainable agriculture and global food security, vol. Vol. 1, 125–148. Singapore: Springer.

    Chapter  Google Scholar 

  • Ghaderi, N., and M. Jafari. 2014. Efficient plant regeneration, genetic fidelity and high-level accumulation of two pharmaceutical compounds in regenerated plants of Valeriana officinalis L. South African Journal of Botany 92: 19–27.

    Article  CAS  Google Scholar 

  • Goswami, K., R. Sharma, P.K. Singh, and G. Singh. 2013. Micropropagation of seedless lemon (Citrus limon L. cv. Kaghzi Kalan) and assessment of genetic fidelity of micropropagated plants using RAPD markers. Physiology and Molecular Biology of Plants 19 (1): 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Goyal, A.K., S. Pradhan, B.C. Basistha, and A. Sen. 2015. Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech 5 (4): 473–482.

    Article  PubMed  Google Scholar 

  • Gupta, M., Y.S. Cgyi, J. Romero-Severson, and J.L. Owen. 1994. Amplification of DNA markers from evolutionary diverse genome using single primers of simple-sequence repeats. Theoretical and Applied Genetics 89: 998–1006.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, A.K., M.K. Rai, M. Phulwaria, T. Agarwal, and N.S. Shekhawat. 2014. In vitro propagation, encapsulation, and genetic fidelity analysis of Terminalia arjuna: A cardioprotective medicinal tree. Applied Biochemistry and Biotechnology 173 (6): 1481–1494.

    Article  CAS  PubMed  Google Scholar 

  • Guranna, P., I. Hosamani, R. Sathyanarayana, R. Hegde, and K. Hipparagi. 2017. Micropropagation in pomegranate (Punica granatum L.) cv.‘Bhagwa’through indirect organogenesis and assessment of genetic fidelity by RAPD marker. Biotechnology Journal International 20: 1–8.

    Google Scholar 

  • Hadrys, H., M. Balick, and B. Schierwater. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 1 (1): 55–63. https://doi.org/10.1111/j.1365-294x.1992.tb00155.x.

    Article  CAS  PubMed  Google Scholar 

  • Haisel, D., P. Hofman, M. Vagneri, H. Lipavska, L. Ticha, C. Schafer, and V. Capkova. 2001. Ex vitro phenptype stability is affected by in vitro cultivation. Biologia Plantarum 44: 321–324.

    Article  CAS  Google Scholar 

  • Hamdeni, I., I. Yangui, A. Sanaa, S. Slim, M. Louhaichi, C. Messaoud, and T. Bettaieb. 2021. Aloe vera L.(Asphodelaceae): Supplementation of in-vitro culture medium with Aloe vera gel for production of genetically stable plants. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2021.08.025.

  • Haque, S.M., and B. Ghosh. 2016. High-frequency somatic embryogenesis and artificial seeds for mass production of true-to-type plants in Ledebouria revoluta: An important cardioprotective plant. Plant Cell, Tissue and Organ Culture 127 (1): 71–83.

    Article  CAS  Google Scholar 

  • Haradzi, N.A., S.P. Khor, S. Subramaniam, and B.L. Chew. 2021. Regeneration and micropropagation of Meyer lemon (Citrus x meyeri) supported by polymorphism analysis via molecular markers. Scientia Horticulturae 286: 110225.

    Article  CAS  Google Scholar 

  • Hebert, P.D., A. Cywinska, S.L. Ball, and J.R. de Waard. 2003. Biological identifications through DNA barcodes. Proceedings of the Biological Sciences 270: 313–321. https://doi.org/10.1098/rspb.2002.2218.

    Article  CAS  Google Scholar 

  • Heinze, B., and J. Schmidt. 1995. Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica 85 (1): 341–345.

    Article  CAS  Google Scholar 

  • Hollingsworth, P.M., L.L. Forrest, J.L. Spouge, M. Hajibabaei, S. Ratnasingham, M. van der Bank, M.W. Chase, R.S. Cowan, D.L. Erickson, A.J. Fazekas, S.W. Graham, K.E. James, K.J. Kim, W.J. Kress, H. Schneider, J. van Alphen Stahl, S.C.H. Barrett, C. van den Berg, D. Bogarin, K.S. Burgess, K.M. Cameron, M. Carine, J. Chacón, A. Clark, J.J. Clarkson, F. Conrad, D.S. Devey, C.S. Ford, T.A.J. Hedderson, M.L. Hollingsworth, B.C. Husband, L.J. Kelly, P.R. Kesanakurti, J.S. Kim, Y.D. Kim, R. Layahe, H.L. Lee, D.G. Long, S. Madriñán, O. Maurin, I. Meusnier, S.G. Newmaster, C.W. Park, D.M. Percy, G. Petersen, J.E. Richardson, G.A. Salazar, V. Savolainen, O. Seberg, M.J. Wilkinson, D.K. Yi, and D.P. Little. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106 (31): 12794–12797.

    Article  CAS  PubMed Central  Google Scholar 

  • Hussain, A., Q.I. Ahmed, N. Hummera, and U. Ikram. 2012. Plant tissue culture: current status and opportunities. In Recent advances in plant in vitro culture. Annarita leva and Laura M.R. Rinaldi, Intech Open. https://doi.org/10.5772/50568.

    Chapter  Google Scholar 

  • Hussain, S.A., N. Ahmad, M. Anis, and A.A. Alatar. 2019. Influence of meta-topolin on in vitro organogenesis in Tecoma stans L., assessment of genetic fidelity and phytochemical profiling of wild and regenerated plants. Plant Cell, Tissue and Organ Culture 138 (2): 339–351.

    Article  CAS  Google Scholar 

  • Hussain, S.A., M. Anis, and A.A. Alatar. 2020. Efficient in vitro regeneration system for Tecoma stans L., using shoot tip and assessment of genetic fidelity among regenerants. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 90 (1): 171–178.

    Article  CAS  Google Scholar 

  • Jaiswal, P., N. Kumari, S.P. Kashyap, and S.K. Tiwari. 2021. Organogenesis from leaf tissue of Spondias pinnata (L. f.) Kurz, SEM study and Genetic Fidelity Assessment by ISSR and ScoT. Plant Cell, Tissue and Organ Culture 146: 203–212.

    Article  CAS  Google Scholar 

  • Jogam, P., D. Sandhya, M.S. Shekhawat, A. Alok, M. Manokari, S. Abbagani, and V.R. Allini. 2020. Genetic stability analysis using DNA barcoding and molecular markers and foliar micro-morphological analysis of in vitro regenerated and in vivo grown plants of Artemisia vulgaris L. Industrial Crops and Products 151: 112476. https://doi.org/10.1016/j.indcrop.2020.112476.

    Article  CAS  Google Scholar 

  • Joshi, C., H. Zhou, X. Huang, and V.L. Chiang. 1997. Context sequences of translation initiation codon in plants. Plant Molecular Biology 35: 993–1001.

    Article  CAS  PubMed  Google Scholar 

  • Kadapatti, S.S., and H.N. Murthy. 2021. Rapid plant regeneration, analysis of genetic fidelity, and neoandrographolide content of micropropagated plants of Andrographis alata (Vahl) Nees. Journal, Genetic Engineering & Biotechnology 19 (1): 1–8.

    Article  Google Scholar 

  • Kamińska, M., A. Tretyn, and A. Trejgell. 2020. Genetic stability assessment of Taraxacum pieninicum plantlets after long-term slow growth storage using ISSR and SCoT markers. Biologia 75 (4): 599–604.

    Article  CAS  Google Scholar 

  • Kaur, K., K. Kaur, A. Bhandawat, and P.K. Pati. 2021. In vitro shoot multiplication using meta-Topolin and leaf-based regeneration of a withaferin A rich accession of Withania somnifera (L.) Dunal. Industrial Crops and Products 171: 113872.

    Article  CAS  Google Scholar 

  • Kaushal, N., A. Alok, M. Kajal, and K. Singh. 2021. Regeneration and genetic fidelity analysis of Chlorophytum borivilianum Using Flower Stalk as Explant Source. Advances in Bioscience and Biotechnology 12 (04): 95.

    Article  CAS  Google Scholar 

  • Khan, R.G., B. Prasad, C. Ravi, K. Rajender, and R. Christopher. 2015. In vitro clonal propagation of Rauwolfia tetraphylla, a relative of Indian snakeroot plant. Research Journal of Biotechnology 10 (11): 23–31.

    CAS  Google Scholar 

  • Khatun, M.M., T. Tanny, S. Yesmin, M.D. Salimullah, and I. Alam. 2018. Evaluation of genetic fidelity of in vitro propagated Aloe vera plants using DNA-based markers. Science Asia 44: 87–91.

    Article  CAS  Google Scholar 

  • Khor, S.P., L.C. Yeow, R. Poobathy, R. Zakaria, B.L. Chew, and S. Subramaniam. 2020. Droplet-vitrification of Aranda broga Blue orchid: Role of ascorbic acid on the antioxidant system and genetic fidelity assessments via RAPD and SCoT markers. Biotechnology Reports 26: e00448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, M., J.Z. Lin, J. Davis, L. Francis, and M.T. Clegg. 2000. Quantitative analysis of avocado outcrossing and yield in California using RAPD markers. Scientia Horticulturae 86 (2): 135–149.

    Article  Google Scholar 

  • Kocaman, Y., and B. Güven. 2015. In vitro genotoxicity assessment of the synthetic plant growth regulator, 1-naphthaleneacetamide. Cytotechnology 68: 947–956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konar, S., S. Adhikari, J. Karmakar, A. Ray, and T.K. Bandyopadhyay. 2019. Evaluation of subculture ages on organogenic response from root callus and SPAR based genetic fidelity assessment in the regenerants of Hibiscus sabdariffa L. Industrial Crops and Products 135: 321–329.

    Article  CAS  Google Scholar 

  • Korra, R., P. Bylla, G.K. Rohela, S. Pendli, and T.C. Reuben. 2017. In vitro micro propagation and confirmation of genetic fidelity using RAPD marker in ethno medicinal plant Stachytarpheta jamaicensis L. Vahl. International Journal of Advanced Research 5: 1494–1502.

    Google Scholar 

  • Kudikala, H., P. Jogam, A. Sirikonda, K. Mood, and V.R. Allini. 2020. In vitro micropropagation and genetic fidelity studies using SCoT and ISSR primers in Annona reticulata L.: An important medicinal plant. Vegetos 33 (3): 446–457. https://doi.org/10.1007/s42535-020-00128-3.

    Article  Google Scholar 

  • Kulus, D. 2019. Application of synthetic seeds in propagation, storage, and preservation of Asteraceae plant species. In Synthetic seeds, 155–179. Cham: Springer.

    Chapter  Google Scholar 

  • Kumar, N.S., and G. Gurusubramanian. 2011. Random amplified polymorphic DNA (RAPD) markers and its applications. Science Vision 11 (3): 116–124.

    Google Scholar 

  • Kumar, N., A.R. Modi, A.S. Singh, B.B. Gajera, A.R. Patel, M.P. Patel, and N. Subhash. 2010. Assessment of genetic fidelity of micropropagated date palm (Phoenix dactylifera L.) plants by RAPD and ISSR markers assay. Physiology and Molecular Biology of Plants 16 (2): 207–213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., M. Mangal, A.K. Dhawan, and N. Singh. 2011. Assessment of genetic fidelity of micropropagated plants of Simmondsia chinensis (Link) Schneider using RAPD and ISSR markers. Acta Physiologiae Plantarum 33 (6): 2541–2545.

    Article  CAS  Google Scholar 

  • Kumar, A., P. Mishra, S.C. Singh, and V. Sundaresan. 2014. Efficiency of ISSR and RAPD markers in genetic divergence analysis and conservation management of Justicia adhatoda L., a medicinal plant. Plant Systematics and Evolution 30: 1409–1420.

    Article  Google Scholar 

  • Kumari, T.S., and K. Vaidyanath. 1989. Testing of genotoxic effects of 2,4-dichlorophenoxyacetic acid (2,4-D) using multiple genetic assay systems of plants. Mutation Research 226 (4): 235–238. https://doi.org/10.1016/0165-7992(89)90075-4.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, K., M. Lal, and S. Saxena. 2017. Enhanced micropropagation and tiller formation in sugarcane through pretreatment of explants with thidiazuron (TDZ). 3 Biotech 7: 282. https://doi.org/10.1007/s13205-017-0910-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Largia, M.J.V., J. Shilpha, G. Pothiraj, and M. Ramesh. 2015. Analysis of nuclear DNA content, genetic stability, Bacoside A quantity and antioxidant potential of long term in vitro grown germplasm lines of Bacopa monnieri (L.). Plant Cell, Tissue and Organ Culture 120 (1): 399–406.

    Article  CAS  Google Scholar 

  • Larkin, P.J., and W.R. Scowcroft. 1981. Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics 60: 197–214.

    Article  CAS  PubMed  Google Scholar 

  • Lata, H., S. Chandra, N. Techen, I.A. Khan, and M.A. ElSohly. 2016. In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. Journal of Applied Research on Medicinal and Aromatic Plants 3 (1): 18–26.

    Article  Google Scholar 

  • Liu, J., J. Jiang, and S. Song. 2017. Multilocus DNA barcoding—Species identification with multilocus data. Scientific Reports 7: 16601. https://doi.org/10.1038/s41598-017-16920-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maharana, S.B., V. Mahato, M. Behera, R.R. Mishra, and J. Panigrahi. 2012. In vitro regeneration from node and leaf explants of Jatropha curcas L. and evaluation of genetic fidelity through RAPD markers. Indian Journal of Biotechnology 11: 280–287.

    CAS  Google Scholar 

  • Malik, M.Q., A. Mujib, and B. Gulzar. 2020. Genome size analysis of field grown and somatic embryo regenerated plants in Allium sativum L. Journal of Applied Genetics 61: 25–35. https://doi.org/10.1007/s13353-019-00536-5.

    Article  CAS  PubMed  Google Scholar 

  • Malik, S., A. Priya, and S.B. Babbar. 2019. Employing barcoding markers to authenticate selected endangered medicinal plants traded in Indian markets. Physiology and Molecular Biology of Plants 25: 327–337. https://doi.org/10.1007/s12298-018-0610-8.

    Article  CAS  PubMed  Google Scholar 

  • Mallaya, N.P., and G.A. Ravishankar. 2013. In vitro propagation and genetic fidelity study of plant regenerated from inverted hypocotyl explants of eggplant (Solanum melongena L.) cv. Arka Shirish. 3 Biotech 3 (1): 45–52.

    Article  Google Scholar 

  • Malviya, N., and D. Yadav. 2010. RAPD analysis among pigeon pea [Cajanus cajan (L.) Mill sp.] cultivars for their genetic diversity. Genetic Engineering and Biotechnology Journal 1: 1–9.

    Google Scholar 

  • Manokari, M., S.R. Mehta, S. Priyadharshini, M.K. Badhepuri, S. Dulam, K. Jayaprakash, and M.S. Shekhawat. 2021a. Meta-Topolin mediated improved micropropagation, foliar micro-morphological traits, biochemical profiling, and assessment of genetic fidelity in Santalum album L. Industrial Crops and Products 171: 113931.

    Article  CAS  Google Scholar 

  • Manokari, M., S. Priyadharshini, P. Jogam, A. Dey, and M.S. Shekhawat. 2021b. Meta-topolin and liquid medium mediated enhanced micropropagation via ex vitro rooting in Vanilla planifolia Jacks. ex Andrews. Plant Cell, Tissue and Organ Culture. https://doi.org/10.1007/s11240-021-02044-z.

  • Martins, M., D. Sarmento, and M.M. Oliveira. 2004. Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Reports 23 (7): 492–496.

    Article  CAS  PubMed  Google Scholar 

  • Mazri, M.A., R. Meziani, S. Elmaataoui, M.N. Alfeddy, and F. Jaiti. 2019. Assessment of genetic fidelity, biochemical and physiological characteristics of in vitro grown date palm cv. Al-Fayda. Vegetos 32 (3): 333–344.

    Article  Google Scholar 

  • Mehta, R., V. Sharma, A. Sood, M. Sharma, and R.K. Sharma. 2011. Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro-derived plantlets of Bambusa nutans Wall. using AFLP markers. European Journal of Forest Research 130: 29–736.

    Article  Google Scholar 

  • Miguel, C., and L. Marum. 2011. An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. Journal of Experimental Botany 62 (11): 3713–3725.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, P., A. Kumar, A. Nagireddy, D.N. Mani, A.K. Shukla, and R. Tiwari. 2016. DNA barcoding: An efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnology Journal 14: 8–21. https://doi.org/10.1111/pbi.12419.

    Article  CAS  PubMed  Google Scholar 

  • Modi, A.R., G. Patil, N. Kumar, A.S. Singh, and N. Subhash. 2012. A simple and efficient in vitro mass multiplication procedure for Stevia rebaudiana Bertoni and analysis of genetic fidelity of in vitro raised plants through RAPD. Sugar Tech 14 (4): 391–397.

    Article  CAS  Google Scholar 

  • Munthali, M.T., H.J. Newbury, and B.V. Ford-Lloyd. 1996. The detection of somaclonal variants of beet using RAPD. Plant Cell Reports 15 (7): 474–478.

    Article  CAS  PubMed  Google Scholar 

  • Mujib, A., M. Ali, D. Tonk, and N. Zafar. 2017. Nuclear 2C DNA and genome size analysis in somatic embryo regenerated gladiolus plants using flow cytometry. Advances in Horticultural Science 31 (3): 165–174.

    Google Scholar 

  • Muthukumar, M., T.S. Kumar, and M.V. Rao. 2016. Organogenesis and evaluation of genetic homogeneity through SCoT and ISSR markers in Helicteres isora L., a medicinally important tree. South African Journal of Botany 106: 204–210.

    Article  Google Scholar 

  • Muthukumar, M., S. Muthukrishnan, T.S. Kumar, and M.V. Rao. 2020. Direct regeneration, microshoot recovery and assessment of genetic fidelity in Helicteres isora L., a medicinally important tree. Biocatalysis and Agricultural Biotechnology 23: 101415.

    Article  Google Scholar 

  • Naik, P.S., and T. Buckseth. 2018. Recent advances in virus elimination and tissue culture for quality potato seed production. In Biotechnologies of crop improvement, vol. Vol. 1, 131–158.

    Chapter  Google Scholar 

  • Nazir, R., S. Gupta, A. Dey, V. Kumar, M. Yousuf, S. Hussain, and D.K. Pandey. 2021. In vitro propagation and assessment of genetic fidelity in Dioscorea deltoidea, a potent diosgenin yielding endangered plant. South African Journal of Botany 140: 349–355.

    Article  CAS  Google Scholar 

  • Othmani, A., S. Rhouma, C. Bayoudh, R. Mzid, N. Drira, and M. Trifi. 2010. Regeneration and analysis of genetic stability of plantlets as revealed by RAPD and AFLP markers in date palm (Phoenix dactylifera L.) cv. Deglet Nour. International Research Journal of Plant Science 1 (3): 48–55.

    Google Scholar 

  • Ozkul, M., Ç.A. Ozel, D. Yüzbaşıoğlu, and F. Ünal. 2016. Does 2,4-dichlorophenoxyacetic acid (2,4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology 68 (6): 2395–2405. https://doi.org/10.1007/s10616-016-9956-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey, S., P. Patel, A. Prasad, S.V. Sawant, and P. Misra. 2020. Assessment of direct shoot organogenesis and genetic fidelity in Solanum viarum Dunal—a commercially important medicinal plant. In Vitro Cellular & Developmental Biology: Plant 56 (4): 538–547.

    Article  CAS  Google Scholar 

  • Parab, A.R., C.B. Lynn, and S. Subramaniam. 2021. Assessment of genetic stability on in vitro and ex vitro plants of Ficus carica var. black jack using ISSR and DAMD markers. Molecular Biology Reports 48: 7223–7231.

    Article  CAS  PubMed  Google Scholar 

  • Paul, P., and S. Kumaria. 2020. Precursor-induced bioaccumulation of secondary metabolites and antioxidant activity in suspension cultures of Dendrobium fimbriatum, an orchid of therapeutic importance. South African Journal of Botany 135: 137–143.

    Article  CAS  Google Scholar 

  • Pavlica, M., D. Papes, and B. Nagy. 1991. 2,4-Dichlorophenoxyacetic acid causes chromatin and chromosome abnormalities in plant cells and mutation in cultured mammalian cells. Mutation Research 263 (2): 77–81. https://doi.org/10.1016/0165-7992(91)90063-a.

    Article  CAS  PubMed  Google Scholar 

  • Pendli, S., G.K. Rohela, P. Jogam, P. Bylla, R. Korra, and C. Thammidala. 2019. High frequency in vitro plantlet regeneration in Solanum trilobatum L., an important ethno-medicinal plant and confirmation of genetic fidelity of R 1 plantlets by using ISSR and RAPD markers. Vegetos 32 (4): 508–520. https://doi.org/10.1007/s42535-019-00069-6.

    Article  Google Scholar 

  • Pescador, R., G.B. Kerbauy, D. Viviani, and J.E. Kraus. 2008. Anomalous somatic embryos in Acca sellowiana (O. Berg) Burret (Myrtaceae). Brazilian Journal of Botany 31: 155–164.

    Article  Google Scholar 

  • Phillips, R.L., S.M. Kaeppler, and P. Olhoft. 1994. Genetic instability of plant tissue cultures: Breakdown of normal controls. Proceedings of the National Academy of Sciences of the United States of America 91 (12): 5222–5226. https://doi.org/10.1073/pnas.91.12.5222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittampalli, B., P. Jogam, R.K. Thampu, S. Abbagani, and V. Peddaboina. 2021. High-frequency plant regeneration and genetic homogeneity assessment of regenerants by molecular markers in turmeric (Curcuma longa L.). In Vitro Cellular & Developmental Biology: Plant 58: 169–180.

    Article  CAS  Google Scholar 

  • Pramanik, B., S. Sarkar, S. Bhattacharyya, and S. Gantait. 2021. Meta-Topolin-induced enhanced biomass production via direct and indirect regeneration, synthetic seed production, and genetic fidelity assessment of Bacopa monnieri (L.) Pennell, a memory-booster plant. Acta Physiologiae Plantarum 43 (7): 1–14.

    Article  CAS  Google Scholar 

  • Prameela, J., H. Ramakrishnaiah, V. Krishna, A.P. Deepalakshmi, N.N. Kumar, and R.N. Radhika. 2015. Micropropagation and assessment of genetic fidelity of Henckelia incana: An endemic and medicinal Gesneriad of South India. Physiology and Molecular Biology of Plants 21 (3): 441–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad, B., R.G. Khan, T. Radha, C. Ravi, P. Venkataiah, K. Subhash, and T.C. Reuben. 2013. DNA profiling of commercial chilli pepper (Capsicum annuum L.) varieties using random amplified polymorphic DNA (RAPD) markers. African Journal of Biotechnology 12 (30): 4730–4735.

    Article  CAS  Google Scholar 

  • Priya, S., P. Anjana, and S. Major. 2013. Identification of the RAPD marker linked to powdery mildew resistant gene (s) in black gram by using bulk segregant analysis. Research Journal of Biotechnology 8: 2.

    Google Scholar 

  • Priyadharshini, S., N. Kannan, M. Manokari, and M.S. Shekhawat. 2020. In vitro regeneration using twin scales for restoration of critically endangered aquatic plant Crinum malabaricum Lekhak & Yadav: A promising source of galanthamine. Plant Cell, Tissue and Organ Culture 141 (3): 593–604.

    Article  CAS  Google Scholar 

  • Rahmani, M.S., P.M. Pijut, and N. Shabanian. 2016. Protoplast isolation and genetically true-to-type plant regeneration from leaf-and callus-derived protoplasts of Albizia julibrissin. Plant Cell, Tissue and Organ Culture 127 (2): 475–488.

    Article  CAS  Google Scholar 

  • Raji, M.R., M. Lotfi, M. Tohidfar, B. Zahedi, A. Carra, L. Abbate, and F. Carimi. 2017. Somatic embryogenesis of muskmelon (Cucumis melo L.) and genetic stability assessment of regenerants using flow cytometry and ISSR markers. Protoplasma 255: 873–883.

    Article  PubMed  CAS  Google Scholar 

  • Raji, M.R., and M. Farajpour. 2021. Genetic fidelity of regenerated plants via shoot regeneration of muskmelon by inter simple sequence repeat and flow cytometry. Journal of the Saudi Society of Agricultural Sciences 20 (2): 88–93.

    Article  Google Scholar 

  • Rajput, B.S., M. Jani, K. Ramesh, M. Manokari, P. Jogam, V.R. Allini, and M.S. Shekhawat. 2020. Large-scale clonal propagation of Bambusa balcooa Roxb.: An industrially important bamboo species. Industrial Crops and Products 157: 112905. https://doi.org/10.1016/j.indcrop.2020.112905.

    Article  CAS  Google Scholar 

  • Rajput, S., and V. Agrawal. 2020. Micropropagation of Atropa acuminata Royle ex Lindl. (a critically endangered medicinal herb) through root callus and evaluation of genetic fidelity, enzymatic and non-enzymatic antioxidant activity of regenerants. Acta Physiologiae Plantarum 42 (11): 1–17.

    Article  CAS  Google Scholar 

  • Ranade, S.A., T.S. Rana, and D. Narzary. 2009. SPAR profile and genetic diversity amongst pomegranate (Punica granatum L.) genotypes. Physiology and Molecular Biology of Plants 15: 61–70. https://doi.org/10.1007/s12298-009-0006-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rani, V., and S.N. Raina. 2000. Genetic fidelity of organized meristem derived micropropagated plants: A critical reappraisal. In Vitro Cellular & Developmental Biology: Plant 36: 319–330.

    Article  CAS  Google Scholar 

  • Rath, S.C., S. Seth, S.K. Mishra, P.K. Yadav, A.K. Gupta, and J. Panigrahi. 2020. Genetic homogeneity assessment of in vitro-regenerated plantlets of Nyctanthes arbortristis L. and comparative evaluation of bioactive metabolites and antioxidant activity. In Vitro Cellular & Developmental Biology: Plant 56 (1): 72–87.

    Article  CAS  Google Scholar 

  • Ratnaparkhe, M.B., M. Tekeoglu, and F.J. Muehlbauer. 1998. Intersimple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theoretical and Applied Genetics 97: 515–519.

    Article  CAS  Google Scholar 

  • Ravi, C., S.A. Kumar, R.G. Khan, B. Prasad, and T.C. Reuben. 2012. High frequency in vitro clonal propagation of Solanum surattense Burm. f. International Journal of Pharma and Bio Sciences 3 (4): 147–151.

    Google Scholar 

  • Ray, T., I. Dutta, P. Saha, S. Das, and S.C. Roy. 2006. Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains as assessed by RAPD and ISSR markers. Plant Cell, Tissue and Organ Culture 85: 11–21.

    Article  CAS  Google Scholar 

  • Razaq, M., M. Heikrujam, S.K. Chetri, and V. Agrawal. 2013. In vitro clonal propagation and genetic fidelity of the regenerants of Spilanthes calva DC. using RAPD and ISSR marker. Physiology and Molecular Biology of Plants 19 (2): 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, M.P., N. Sarla, and E.A. Siddiq. 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128: 9–17.

    Article  Google Scholar 

  • Rohela, G.K., P. Bylla, S. Kota, S. Abbagani, R. Chithakari, and T.C. Reuben. 2013. In vitro plantlet regeneration from leaf and stem calluses of Rauwolfia tetraphylla (R. canescens) and confirmation of genetic fidelity of plantlets using the ISSR-PCR method. Journal of Herbs Spices & Medicinal Plants 19 (1): 66–75.

    Article  Google Scholar 

  • Rohela, G.K., S. Damera, P. Bylla, R. Korra, S. Pendli, and C. Thammidala. 2016. Somatic embryogenesis and indirect regeneration in Mirabilis jalapa Linn. Materials Today: Proceedings 3 (10): 3882–3891.

    Google Scholar 

  • Rohela, G.K., P. Jogam, A.A. Shabnam, P. Shukla, S. Abbagani, and M.K. Ghosh. 2018a. In vitro regeneration and assessment of genetic fidelity of acclimated plantlets by using ISSR markers in PPR-1 (Morus sp.): An economically important plant. Scientia Horticulturae 241: 313–321. https://doi.org/10.1016/j.scienta.2018.07.012.

    Article  CAS  Google Scholar 

  • Rohela, G.K., A.A. Shabnam, P. Shukla, R. Aurade, M. Gani, S. Yelugu, and S.P. Sharma. 2018b. In vitro clonal propagation of PPR-1, a superior temperate mulberry variety. Indian Journal of Biotechnology 17 (4): 619–625.

    CAS  Google Scholar 

  • Rohela, G.K., P. Jogam, P. Bylla, and C. Reuben. 2019. Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT, ISSR, and RAPD markers in Rauwolfia tetraphylla L.: An endangered medicinal plant. BioMed Research International 2019. https://doi.org/10.1155/2019/3698742.

  • Rohela, G.K., P. Jogam, M.Y. Mir, A.A. Shabnam, P. Shukla, S. Abbagani, and A.N. Kamili. 2020. Indirect regeneration and genetic fidelity analysis of acclimated plantlets through SCoT and ISSR markers in Morus alba L. cv. Chinese white. Biotechnology Reports 25: e00417. https://doi.org/10.1016/j.btre.2020.e00417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohela, G.K., P. Bylla, S. Pendli, R. Korra, R. Gandu, and C. Reuben. 2021. High performance liquid chromatography based quantification of reserpine in Rauwolfia tetraphylla L. and enhanced production through precursor feeding. Acta Chromatographica 34 (2): 120–129. https://doi.org/10.1556/1326.2021.00888.

    Article  CAS  Google Scholar 

  • Roy, S., A. Tyagi, V. Shukla, A. Kumar, U.M. Singh, L.B. Chaudhary, B. Datt, S.K. Bag, P.K. Singh, N.K. Nair, T. Husain, and R. Tuli. 2010. Universal plant DNA barcode loci may not work in complex groups: A case study with Indian Berberis species. PLoS One 5 (10): e13674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadhu, S., P. Jogam, R.K. Thampu, S. Abbagani, S. Penna, and V. Peddaboina. 2020. High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.). Plant Cell, Tissue and Organ Culture 141: 465–477. https://doi.org/10.1007/s11240-020-01804-7.

    Article  CAS  Google Scholar 

  • Sagare, A.P., Y.L. Lee, T.C. Lin, C.C. Chen, and H.S. Tsay. 2000. Cytokinin-induced somatic embryogenesis and plant regeneration in Coryodalis yanhusuo (Fumariaceae)- a medicinal plant. Plant Science 160: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Saker, M.M., S.S. Adawy, A.A. Mohamed, and H.A. El-Itriby. 2006. Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biologia Plantarum 50: 198–204.

    Article  CAS  Google Scholar 

  • Samantaray, S., and S. Maiti. 2010. An assessment of genetic fidelity of micropropagated plants of Chlorophytum borivilianum using RAPD markers. Biologia Plantarum 54 (2): 334–338.

    Article  CAS  Google Scholar 

  • Sandhya, D., P. Jogam, M. Manokari, M.S. Shekhawat, J.S. Jaduan, V.R. Allini, and S. Abbagani. 2021. High-frequency in vitro propagation and assessment of genetic uniformity and micro-morphological characterization of Origanum majorana L. –A highly traded aromatic herb. Biocatalysis and Agricultural Biotechnology 34: 102024. https://doi.org/10.1016/j.bcab.2021.102024.

    Article  CAS  Google Scholar 

  • Sankar, A.A., and G.A. Moore. 2001. Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of genetic linkage map. Theoretical and Applied Genetics 102: 206–214.

    Article  CAS  Google Scholar 

  • Sarkar, J., and N. Banerjee. 2020. Influence of different cytokinins on micropropagation of an important medicinal plant, Solanum erianthum D. Don, and assessment of the genetic fidelity of the regenerants. In Vitro Cellular & Developmental Biology: Plant 56 (4): 480–490.

    Article  CAS  Google Scholar 

  • Sathish, D., V. Vasudevan, J. Theboral, D. Elayaraja, C. Appunu, R. Siva, and M. Manickavasagam. 2018. Efficient direct plant regeneration from immature leaf roll explants of sugarcane (Saccharum officinarum L.) using polyamines and assessment of genetic fidelity by SCoT markers. In Vitro Cellular & Developmental Biology: Plant 54 (4): 399–412.

    Article  CAS  Google Scholar 

  • Savitikadi, P., P. Jogam, G.K. Rohela, R. Ellendula, D. Sandhya, V.R. Allini, and S. Abbagani. 2020. Direct regeneration and genetic fidelity analysis of regenerated plants of Andrographis echioides (L.)—An important medicinal plant. Industrial Crops and Products 155: 112766. https://doi.org/10.1016/j.indcrop.2020.112766.

    Article  CAS  Google Scholar 

  • Sawant, S.V., P.K. Singh, S.K. Gupta, R. Madnala, and R. Tuli. 1999. Conserved nucleotide sequences in highly expressed genes in plants. Journal of Genetics 78: 128–131.

    Article  Google Scholar 

  • Schori, M., and A.M. Showalter. 2011. DNA barcoding as a means for identifying medicinal plants of Pakistan. Pakistan Journal of Botany 43: 1–4.

    CAS  Google Scholar 

  • Seth, S., and J. Panigrahi. 2019. In vitro organogenesis of Abutilon indicum (L.) Sweet from leaf derived callus and assessment of genetic fidelity using ISSR markers. The Journal of Horticultural Science and Biotechnology 94 (1): 70–79.

    Article  CAS  Google Scholar 

  • Seth, S., S.C. Rath, G.R. Rout, and J. Panigrahi. 2017. Somatic embryogenesis in Abutilon indicum (L.) Sweet and assessment of genetic homogeneity using SCoT markers. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 151 (4): 704–714.

    Article  Google Scholar 

  • Sharma, S.K., S. Kumaria, P. Tandon, and S.R. Rao. 2011a. Single primer amplification reaction (SPAR) reveals inter-and intra-specific natural genetic variation in five species of Cymbidium (Orchidaceae). Gene 483: 54–62. https://doi.org/10.1016/j.gene.2011.05.013.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, M.M., R.N. Verma, and A. Singh. 2014. Assessment of clonal fidelity of Tylophora indica (Burm. f.) Merrill “in vitro” plantlets by ISSR molecular markers. Springerplus 3: 400. https://doi.org/10.1186/2193-1801-3-400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, N., R. Gowthami, and R. Pandey. 2019a. Synthetic Seeds: A valuable adjunct for conservation of medicinal plants. In Synthetic seeds, 181–216. Cham: Springer.

    Chapter  Google Scholar 

  • Sharma, S., D.S. Pamidimarri, K.V. Anand, and M.P. Reddy. 2011b. Assessment of genetic stability in micropropagules of Jatropha curcas genotypes by RAPD and AFLP analysis. Industrial Crops and Products 34 (1): 1003–1009.

    Article  CAS  Google Scholar 

  • Sharma, U., M.K. Rai, N.S. Shekhawat, and V. Kataria. 2019b. Genetic homogeneity revealed in micropropagated Bauhinia racemosa Lam. using gene targeted markers CBDP and SCoT. Physiology and Molecular Biology of Plants 25 (2): 581–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat, M.S., S. Priyadharshini, P. Jogam, V. Kumar, and M. Manokari. 2021. Meta-topolin and liquid medium enhanced in vitro regeneration in Scaevola taccada (Gaertn.) Roxb. In Vitro Cellular & Developmental Biology: Plant: 1–1. https://doi.org/10.1007/s11627-020-10156-y.

  • Sherif, N.A., T.S. Kumar, and M.V. Rao. 2020. DNA barcoding and genetic fidelity assessment of micropropagated Aenhenrya rotundifolia (Blatt.) CS Kumar and FN Rasm.: A critically endangered jewel orchid. Physiology and Molecular Biology of Plants 26 (12): 2391–2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilpha, J., S. Pandian, M.J.V. Largia, S.I. Sohn, and M. Ramesh. 2021. Short-term storage of Solanum trilobatum L. synthetic seeds and evaluation of genetic homogeneity using SCoT markers. Plant Biotechnology Reports 15: 651–661.

    Article  CAS  Google Scholar 

  • Shilpha, J., T. Silambarasan, and M.J.V. Largia. 2014. Improved in vitro propagation, solasodine accumulation and assessment of clonal fidelity in regenerants of Solanum trilobatum L. by flow cytometry and SPAR methods. Plant Cell, Tissue and Organ Culture 117: 125–129. https://doi.org/10.1007/s11240-013-0420-1.

    Article  CAS  Google Scholar 

  • Singh, R.K., G.P. Mishra, A. Kant, and S.B. Singh. 2009. Molecular markers in plants. In Molecular plant breeding: Principle, method and application, ed. R.K. Singh, R. Singh, G. Ye, A. Selvi, and G.P. Rao, 37–80. Studium Press LLC USA.

    Google Scholar 

  • Singh, A., M.S. Negi, V.K. Moses, B. Venkateswarlu, P.S. Srivastava, and M. Lakshmikumaran. 2002. Molecular analysis of micropropagated neem plants using AFLP markers for ascertaining clonal fidelity. In Vitro Cellular & Developmental Biology: Plant 38 (5): 519–524.

    Article  CAS  Google Scholar 

  • Singh, R., S.P. Kashyap, N. Kumari, and M. Singh. 2016. Regeneration of soapnut tree through somatic embryogenesis and assessment of genetic fidelity through ISSR and RAPD markers. Physiology and Molecular Biology of Plants 22 (3): 381–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, S.R., S. Dalal, R. Singh, A.K. Dhawan, and R.K. Kalia. 2013. Evaluation of genetic fidelity of in vitro raised plants of Dendrocalamus asper (Schult. & Schult. F.) Backer ex K. Heyne using DNA-based markers. Acta Physiologiae Plantarum 35 (2): 419–430.

    Article  CAS  Google Scholar 

  • Singh, N., R. Bajpai, K.S. Mahar, V. Tiwari, D.K. Upreti, and T.S. Rana. 2014. ISSR and DAMD markers revealed high genetic variability within Flavoparmelia caperata in Western Himalaya (India). Physiology and Molecular Biology of Plants 20 (4): 501–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirangi, S., Jogam, P., Rohela, G.K., Ajmeera, R., Abbagani, S., Raju, V.S., 2021. Micropropagation of endemic Corynandra chelidonii var. pallae (Cleomaceae) through nodal explants and validation of their genetic integrity by ISSR markers. Vegetos. doi:10.1007/s42535-021-00302-1

    Google Scholar 

  • Sirikonda, A., P. Jogam, R. Ellendula, H. Kudikala, K. Mood, and V.R. Allini. 2020. In vitro micropropagation and genetic fidelity assesment in Flemingia macrophylla (Willd.) Merr: An ethnomedicinal plant. Vegetos 33: 286–295. https://doi.org/10.1007/s42535-020-00106-9.

    Article  Google Scholar 

  • Srinivasan, P., H.D. Raja, and R. Tamilvanan. 2021. Efficient in vitro plant regeneration from leaf-derived callus and genetic fidelity assessment of an endemic medicinal plant Ranunculus wallichianus Wight & Arnn by using RAPD and ISSR markers. Plant Cell, Tissue and Organ Culture 147: 413–420.

    Article  CAS  Google Scholar 

  • Stoeckle, M.Y., C.C. Gamble, R. Kirpekar, G. Young, S. Ahmed, and D.P. Little. 2011. Commercial teas highlight plant DNA barcode identification successes and obstacles. Scientific Reports 1: 42. https://doi.org/10.1038/srep00042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sujatha, D., R. Chithakari, L. Raghuvardhan, B. Prasad, G. Khan, S. Abbagani, and T. Reuben. 2013. In vitro plantlet regeneration and genetic transformation of sponge gourd (Luffa cylindrica L.). African Journal of Plant Science 7 (6): 244–252.

    Article  Google Scholar 

  • Syeed, R., A. Mujib, M.Q. Malik, J. Mamgain, B. Ejaz, B. Gulzar, and N. Zafar. 2021. Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry. Molecular Biology Reports 48 (1): 513–526.

    Article  CAS  PubMed  Google Scholar 

  • Techen, N., I. Parveen, Z. Pan, and I.A. Khan. 2014. DNA barcoding of medicinal plant material for identification. Current Opinion in Biotechnology 25: 103–110. https://doi.org/10.1016/j.copbio.2013.09.010.

    Article  CAS  PubMed  Google Scholar 

  • Thakur, J., M.D. Dwivedi, P. Sourabh, P.L. Uniyal, and A.K. Pandey. 2016. Genetic homogeneity revealed using SCoT, ISSR and RAPD markers in micropropagated Pittosporum eriocarpum Royle-an endemic and endangered medicinal plant. PLoS One 11 (7): e0159050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thakur, M., V. Sharma, and A. Chauhan. 2021. Genetic fidelity assessment of long term in vitro shoot cultures and regenerated plants in Japanese plum cvs Santa Rosa and Frontier through RAPD, ISSR and SCoT markers. South African Journal of Botany 140: 428–433.

    Article  CAS  Google Scholar 

  • Thorat, A.S., N.A. Sonone, V.V. Choudhari, R.M. Devarumath, and K.H. Babu. 2017. Plant regeneration from cell suspension culture in Saccharum officinarum L. and ascertaining of genetic fidelity through RAPD and ISSR markers. 3 Biotech 7 (1): 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorpe, T. 2007. History of plant tissue culture. Journal of Molecular Microbiology and Biotechnology 37: 169–180.

    CAS  Google Scholar 

  • Tikendra, L., A.S. Koijam, and P. Nongdam. 2019. Molecular markers based genetic fidelity assessment of micropropagated Dendrobium chrysotoxum Lindl. Meta Gene 20: 100562.

    Article  Google Scholar 

  • Tikendra, L., A.M. Potshangbam, A. Dey, T.R. Devi, M.R. Sahoo, and P. Nongdam. 2021. RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. var. oculatum Hk. f.-an important endangered orchid. Physiology and Molecular Biology of Plants 27 (2): 341–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truta, E., M.M. Zamfirache, and C. Rosu. 2011. Cytogenetic effects induced by 2,4-D and kinetin in radish and common bean root meristems. Romanian Agricultural Research 28: 207–215.

    Google Scholar 

  • Tsumura, Y., K. Ohba, and S.H. Strauss. 1996. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglasfir (Pseudo tsugamenziesii) and sugi (Cryptomeria japonica). Theoretical and Applied Genetics 92: 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Umdale, S.D., P.R. Kshirsagar, M.M. Lekhak, and N.B. Gaikwad. 2017. Molecular authentication of the traditional medicinal plant "Lakshman Booti" (Smithia conferta Sm.) and its adulterants through DNA Barcoding. Pharmacognosy Magazine 13: S224–S229.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vankudoth, S., D. Ramakrishna, C.H. Pavani, G. Chaitanya, J. Phanikanth, K. Srinivas, and T. Shasthree. 2020. Micropropagation of Muntingia calabura L. and assessment of genetic fidelity of in vitro raised plants using issr and rapd analysis. Journal of Plant Development: 33–45. https://doi.org/10.33628/jpd.2020.27.1.33.

  • Vasudevan, V., K. Subramanyam, D. Elayaraja, S. Karthik, A. Vasudevan, and M. Manickavasagam. 2017. Assessment of the efficacy of amino acids and polyamines on regeneration of watermelon (Citrullus lanatus Thunb.) and analysis of genetic fidelity of regenerated plants by SCoT and RAPD markers. Plant Cell, Tissue and Organ Culture 130 (3): 681–687.

    Article  CAS  Google Scholar 

  • Vemula, S., T. Koppula, P. Jogam, and M. Mohammed. 2020. In vitro high frequency multiplication and assessment of genetic fidelity of Corallocarpus epigaeus: An endangered medicinal plant. Vegetos 33 (1): 63–73. https://doi.org/10.1007/s42535-019-00085-6.

    Article  Google Scholar 

  • Verma, K.S., S. Kachhwaha, and S.L. Kothari. 2013. In vitro plant regeneration of Citrullus colocynthis (L.) Schard. and assessment of genetic fidelity using ISSR and RAPD markers. Indian Journal of Biotechnology 12: 409–414.

    CAS  Google Scholar 

  • Vogt, G., M. Huber, M. Thiemann, G. van den Boogaart, O.J. Schmitz, and C.D. Schubart. 2008. Production of different phenotypes from the same genotype in the same environment by developmental variation. The Journal of Experimental Biology 211 (4): 510–523.

    Article  CAS  PubMed  Google Scholar 

  • Waman, A.A., G.R. Smitha, and P. Bohra. 2019. Review on clonal propagation of medicinal and aromatic plants through stem cuttings for promoting their cultivation and conservation. Current Agriculture Research Journal 7 (2): 122–138.

    Article  Google Scholar 

  • Wang, G., R. Mahalingan, and H.T. Knap. 1998. (C-A) and (GA) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycine max (L.) Merr. Theoretical and Applied Genetics 96: 1086–1096.

    Article  CAS  Google Scholar 

  • Wilde, J., R. Waugh, and W. Powell. 1992. Genetic fingerprinting of Theobroma clones using randomly amplified polymorphic DNA markers. Theoretical and Applied Genetics 83 (6-7): 871–877.

    Article  CAS  PubMed  Google Scholar 

  • Wilkie, S.E., P.G. Isaac, and R.J. Slater. 1993. Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theoretical and Applied Genetics 86 (4): 497–504.

    Article  CAS  PubMed  Google Scholar 

  • Williams, J.G., A.R. Kubelik, K.J. Livak, J.A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 25 18 (22): 6531–6535. https://doi.org/10.1093/nar/18.22.6531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, K., R. Jones, L. Dannaeberger, and P.A. Scolnik. 1994. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Research 22: 3257–3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiangqian, L.I., F.S. Krasnyanski, and S.K. Schuyler. 2002. Somatic embryogenesis, secondary somatic embryogenesis and shoot organogenesis in Rosa. Plant Physiology 159: 313–319.

    Article  Google Scholar 

  • Yadav, K., S. Kumar, A. Yadav, V. Yadav, P. Pandey, and D.U. Nath. 2012. Genetic diversity of Pigeonpea (Cajanus cajan (L.) Millsp.) cultivars and its wild relatives using randomly amplified polymorphic DNA (RAPD) markers. American Journal of Plant Sciences 3: 322–330.

    Article  CAS  Google Scholar 

  • Yarra, R., M. Bulle, R. Mushke, and E.N. Murthy. 2016. In vitro conservation and genetic homogeneity assessment of Butea monosperma (Lam.) Taub. Var. lutea (Witt.) Maheshwari—A potential pharmaceutical legume tree. Journal of Applied Research on Medicinal and Aromatic Plants 3 (4): 195–199.

    Article  Google Scholar 

  • Yin, Z.F., B. Zhao, W.L. Bi, L. Chen, and Q.C. Wang. 2013. Direct shoot regeneration from basal leaf segments of Lilium and assessment of genetic stability in regenerants by ISSR and AFLP markers. In Vitro Cellular & Developmental Biology: Plant 49 (3): 333–342.

    Article  CAS  Google Scholar 

  • Zafar, N., A. Mujib, M. Ali, D. Tonk, B. Gulzar, M. Malik, R. Syeed, and J. Mamgain. 2019. Genome size analysis of field grown and tissue culture regenerated Rauvolfia serpentina (L) by flow cytometry: Histology and scanning electron microscopic study for in vitro morphogenesis. Industrial Crops and Products 128: 545–555.

    Article  CAS  Google Scholar 

  • Zheng, S. 1991. Chromosome variation in callus culture of Gossypium hirsutum L. In Conservation of plant genes, DNA banking and in vitro biotechnology, ed. R.P. Adams, 211–221. San Diego: Academic Press.

    Google Scholar 

  • Zietkiewicz, E., A. Rafalski, and D. Labuda. 1994. Genome fingerprintingby simple sequence repeat (ssr)-anchored polymerase chainreaction amplification. Genome 20: 176–183.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rohela, G.K., Jogam, P., Saini, P., Sandhya, D., Peddaboina, V., Shekhawat, M.S. (2022). Assessing the Genetic Stability of In Vitro Raised Plants. In: Gupta, S., Chaturvedi, P. (eds) Commercial Scale Tissue Culture for Horticulture and Plantation Crops . Springer, Singapore. https://doi.org/10.1007/978-981-19-0055-6_11

Download citation

Publish with us

Policies and ethics