Skip to main content
Log in

Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Genus Zephyranthes consists of economically important plant species due to their high ornamental value and presence of valuable bioactive compounds. However, this genus propagates by asexual division only which gives slow propagation rate. Plant tissue culture has the potential to provide efficient techniques for rapid multiplication and genetic improvement of the genus. In this work, a dual in vitro regeneration system through callus mediated shoot regeneration and direct shoot regeneration in species Zephyranthes candida, Zephyranthes grandiflora and Zephyranthes citrina was investigated. Bulb, leaf and root explants were cultured on Murashige and Skoog (MS) medium amended with different plant growth regulators (PGR’s) viz. 2,4-dichlorophenoxyacetic acid (2,4-D), 1-Naphthalene acetic acid (NAA), 6-benzyl amino purine (BAP), N-phenyl-N′-1,2,3 -thiadiazol-5-ylurea (TDZ), 6-Furfuryl- aminopurine (KIN) alone or in combinations for callus induction and regeneration. Only bulb explants showed callus induction and regeneration response on different PGR combinations with a varied response in callus induction percentage, callus color and callus texture. Creamish compact callus (CC) was induced on 2 mg L\(^{-1}\) 2,4-D, brown friable callus (BF) on 2 mg L\(^{-1}\) NAA + 1 mg L\(^{-1}\) BAP and green friable callus (GF) callus on 1 mg L\(^{-1}\) KIN + 3 mg L\(^{-1}\) NAA. The maximum shoot multiplication from different callus types (indirect organogenesis) was achieved on 2 mg L\(^{-1}\) BAP alone without combinations. Bulb explants of Z. grandiflora induced maximum callus induction percentage (86.4%) and shoot regeneration percentage (83.5%) with the maximum 08 shoots per 150 mg callus mass. The induction and regeneration response was followed in the order of Z. grandiflora > Z. candida > Z. citrina. Similarly, maximum direct organogenesis from bulb explants was obtained in Z. grandiflora (93.3%) followed by Z. candida (91.5%) and Z. citrina (90.4%) on 3 mg L\(^{-1}\) TDZ amended MS media. Adventitious root induction was achieved on 2 mg L\(^{-1}\) IBA with a maximum of 8 roots per shoot. The in vitro raised plantlets were successfully acclimatized in the field with 85% survival efficiency. The genome size (2C DNA content) of the field-grown plants and in vitro regenerated plants, evaluated through flow cytometry technique, were similar and showed no ploidy changes. An efficient mass propagation protocol was established for obtaining plants with unaltered genome size in the three species of Zephyranthes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog medium

PGRs:

Plant growth regulators

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

Naphthalene acetic acid

IBA:

Indole-3-butyric acid

BAP:

6-Benzylaminopurine

TDZ:

Thidiazuron

KIN:

Kinetin

pg:

Picograms

References

  1. Jin Z (2013) Amaryllidaceae and sceletium alkaloids. Nat Prod Rep 30(6):849–868

    CAS  PubMed  Google Scholar 

  2. Katoch D, Singh B (2015) Phytochemistry and pharmacology of genus zephyranthes. Med Aromat Plants 4(212):2167-0412

    Google Scholar 

  3. Prakash J, Vedanayaki S (2019) Organoleptic, fluorescence, qualitative and quantitative analysis of bulb extract of Zephyranthes citrina. J Pharmacogn Phytochem 8(3):2531–2536

    CAS  Google Scholar 

  4. Kornienko A, Evidente A (2008) Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem Rev 108(6):1982–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bastida Armengol J, Berkov S, Torras Claveria L, Pigni NB, Andrade JPD, Martínez V, Codina Mahrer C, Viladomat Meya F (2011) Chemical and biological aspects of amaryllidaceae alkaloids. In: D Muñoz-Torrero (ed) Recent advances in pharmaceutical sciences, 2011, Chapter 3, pp 65–100

  6. Shen J, Zhang T, Cheng Z, Zhu N, Wang H, Lin L, Wang Z, Yi H, Hu M (2018) Lycorine inhibits glioblastoma multiforme growth through egfr suppression. J Exp Clin Cancer Res 37(1):157

    PubMed  PubMed Central  Google Scholar 

  7. Zhan G, Zhou J, Liu R, Liu T, Guo G, Wang J, Xiang M, Xue Y, Luo Z, Zhang Y et al (2016) Galanthamine, plicamine, and secoplicamine alkaloids from Zephyranthes candida and their anti-acetylcholinesterase and anti-inflammatory activities. J Nat Prod 79(4):760–766

    CAS  PubMed  Google Scholar 

  8. Pang Y, Shen G, Qi H, Tan F, Sun X, Tang K (2004) Transgenic tobacco expressing Zephyranthes candida agglutinin showing enhanced resistance to aphids. Eng Life Sci 4(2):155–159

    CAS  Google Scholar 

  9. Arzu Ç, Başdoğan G (2015) In vitro propagation techniques for some geophyte ornamental plants with high economic value. Int J Second Metab 2(1):27–49

    Google Scholar 

  10. Gangopadhyay M, Chakraborty D, Dewanjee S, Bhattacharya S (2010) Clonal propagation of Zephyranthes grandiflora using bulbs as explants. Biol Plant 54(4):793–797

    Google Scholar 

  11. Ziv M, Naor V (2006) Flowering of geophytes in vitro. Propag Ornam Plants 6(1):3–16

    Google Scholar 

  12. Jena S, Ray A, Sahoo A, Sahoo S, Kar B, Panda PC, Nayak S (2018) High-frequency clonal propagation of curcuma angustifolia ensuring genetic fidelity of micropropagated plants. PCTOC 135(3):473–486

    CAS  Google Scholar 

  13. Huang H, Wei Y, Zhai Y, Ouyang K, Chen X, Bai L (2020) High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia cadamba). Sci Rep 10(1):1–10

    Google Scholar 

  14. King RS, Newmark PA (2012) The cell biology of regeneration. J Cell Biol 196(5):553–562

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Haque SM, Chakraborty A, Ghosh B (2018) Callus mediated shoot organogenesis and regeneration of cytologically stable plants of ledebouria revoluta: An ethnomedicinal plant with promising antimicrobial potency. J Genet Eng Biotechnol 16(2):645–651

    PubMed  PubMed Central  Google Scholar 

  16. Ahmad S, Garg M, Tamboli ET, Abdin M, Ansari S (2013) In vitro production of alkaloids: factors, approaches, challenges and prospects. Pharmacogn Rev 7(13):27

    PubMed  PubMed Central  Google Scholar 

  17. Mujib A, Banerjee S, Maqsood M, Ghosh P (2014) Organogenesis and plant regeneration in Zephyranthes rosea lindl.: histological and chromosomal study. Plant Biosyst Int J Deal Asp Plant Biol 148(3):492–498

    Google Scholar 

  18. Ali M, Mujib A, Tonk D, Zafar N (2017) Plant regeneration through somatic embryogenesis and genome size analysis of coriandrum sativum l. Protoplasma 254(1):343–352

    CAS  PubMed  Google Scholar 

  19. Liu W, Liang Z, Shan C, Marsolais F, Tian L (2013) Genetic transformation and full recovery of alfalfa plants via secondary somatic embryogenesis. Vitro Cell Dev Biol Plant 49(1):17–23

    Google Scholar 

  20. Bonifácio EM, Fonsêca A, Almeida C, dos Santos KG, Pedrosa-Harand A (2012) Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Theor Appl Genet 124(8):1513–1520

    PubMed  Google Scholar 

  21. Felix W, Felix L, Melo N, Oliveira M, Dutilh J, Carvalho R (2011) Karyotype variability in species of the genus Zephyranthes herb. (amaryllidaceae-hippeastreae). Plant Syst Evol 294(3–4):263

    Google Scholar 

  22. Felix WJ, Dutilh JH, Melo NFd, Fernandes AA, Felix LP (2008) Intrapopulational chromosome number variation in Zephyranthes sylvatica baker (amaryllidaceae: Hippeastreae) from northeast brazil. Braz J Bot 31(2):371–375

    Google Scholar 

  23. Viehmannova I, Cepkova PH, Vitamvas J, Streblova P, Kisilova J (2016) Micropropagation of a giant ornamental bromeliad puya berteroniana through adventitious shoots and assessment of their genetic stability through issr primers and flow cytometry. PCTOC 125(1):293–302

    CAS  Google Scholar 

  24. Malik MQ, Mujib A, Gulzar B, Zafar N, Syeed R, Mamgain J, Ejaz B (2020) Genome size analysis of field grown and somatic embryo regenerated plants in allium sativum l. J Appl Genet 61(1):25–35

    CAS  PubMed  Google Scholar 

  25. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear dna content in plants using flow cytometry. Nat Protoc 2(9):2233

    PubMed  Google Scholar 

  26. Loureiro J, Trávníček P, Rauchová J, Urfus T, Vit P, Štech M, Castro S, Suda J et al (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82(1):3–21

    Google Scholar 

  27. Amaral-Silva PM, Clarindo WR, Carrijo TT, Carvalho CR, Praça-Fontes MM (2016) The contribution of cytogenetics and flow cytometry for understanding the karyotype evolution in three dorstenia (linnaeus, 1753) species (moraceae). Comp Cytogenet 10(1):97

    PubMed  PubMed Central  Google Scholar 

  28. Sakhanokho HF, Babiker EM, Smith BJ, Drackett PR (2019) High-frequency somatic embryogenesis, nuclear dna estimation of milkweed species (asclepias latifolia, a. speciosa, and a. subverticillata), and genome size stability of regenerants. PCTOC 137(1):149–156

    CAS  Google Scholar 

  29. Mujib A, Ali M, Tonk D, Zafar N (2017) Nuclear 2c dna and genome size analysis in somatic embryo regenerated gladiolus plants using flow cytometry. Adv Hortic Sci 31(3):165

    Google Scholar 

  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  31. Poggio L, Gonzalez G, Naranjo CA (2007) Chromosome studies in hippeastrum (amaryllidaceae): variation in genome size. Bot J Linn Soc 155(2):171–178

    Google Scholar 

  32. Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘c-value’ to describe nuclear dna contents. Ann Bot 95(1):255–260

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dolezel J (2003) Nuclear dna content and genome size of trout and human. Cytom Part A 51:127–128

    CAS  Google Scholar 

  34. Ncube B, Finnie J, Van Staden J (2015) In vitro regeneration of cyrtanthus species: ornamental plants with medicinal benefits. Vitro Cell Dev Biol Plant 51(1):42–51

    CAS  Google Scholar 

  35. Bakhshaie M, Babalar M, Mirmasoumi M, Khalighi A (2010) Effects of light, sucrose, and cytokinins on somatic embryogenesis in lilium ledebourii (baker) bioss. via transverse thin cell-layer cultures of bulblet microscales. J Hortic Sci Biotechnol 85(6):491–496

    CAS  Google Scholar 

  36. Rice L, Finnie J, Van Staden J (2011) In vitro bulblet production of brunsvigia undulata from twin-scales. S Afr J Bot 77(2):305–312

    Google Scholar 

  37. Del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123(2):173–183

    Google Scholar 

  38. Dharmapal S, Najla M, Swetha E (2017) Callus induction and organogenesis from Tinospora formanii udayan and pradeep: a rare endemic plant. Trop Plant Res. https://doi.org/10.22271/tpr.2017.v4.i1.010

    Article  Google Scholar 

  39. Ashokhan S, Othman R, Abd Rahim MH, Karsani SA, Yaacob JS (2020) Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants 9(3):352

    CAS  PubMed Central  Google Scholar 

  40. You CR, Fan TJ, Gong XQ, Bian FH, Liang LK, Qu FN (2011) A high-frequency cyclic secondary somatic embryogenesis system for cyclamen persicum mill. PCTOC 107(2):233–242

    Google Scholar 

  41. Fehér A (2015) Somatic embryogenesis–stress-induced remodeling of plant cell fate. Biochim Biophys Acta (BBA) Gene Regul Mech 1849(4):385–402

    Google Scholar 

  42. Xu KD, Chang YX, Zhang J, Wang PL, Wu JX, Li YY, Wang XW, Wang W, Liu K, Zhang Y et al (2015) A lower ph value benefits regeneration of Trichosanthes kirilowii by somatic embryogenesis, involving rhizoid tubers (rtbs), a novel structure. Sci Rep 5:8823

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Saeed W, Naseem S, Gohar D, Ali Z (2019) Efficient and reproducible somatic embryogenesis and micropropagation in tomato via novel structures-rhizoid tubers. PLoS ONE 14(5):e0215929

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakakibara K, Nishiyama T, Sumikawa N, Kofuji R, Murata T, Hasebe M (2003) Involvement of auxin and a homeodomain-leucine zipper i gene in rhizoid development of the moss physcomitrella patens. Development 130(20):4835–4846

    CAS  PubMed  Google Scholar 

  45. Pernisová M, Klíma P, Horák J, Válková M, Malbeck J, Souček P, Reichman P, Hoyerová K, Dubová J, Friml J et al (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci 106(9):3609–3614

    PubMed  PubMed Central  Google Scholar 

  46. Chakraborty N, Banerjee D, Ghosh M, Pradhan P, Gupta NS, Acharya K, Banerjee M (2013) Influence of plant growth regulators on callus mediated regeneration and secondary metabolites synthesis in Withania somnifera (L.) dunal. Physiol Mol Biol Plants 19(1):117–125

    CAS  PubMed  Google Scholar 

  47. Gubis J, Lajchová Z, Faragó J, Jureková Z (2004) Effect of growth regulators on shoot induction and plant regeneration in tomato (Lycopersicon esculentum mill.). Biologia 59(3):405–408

    CAS  Google Scholar 

  48. Mujib A, Banerjee S, Maqsood M, Ghosh P (2013) Somatic embryogenesis of some member ornamental genera of amaryllidaceae and allied families: the similarities and differences. Open Hortic. https://doi.org/10.2174/187484062013080700

    Article  Google Scholar 

  49. Rani V, Raina S (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. Vitro Cell Dev Biol Plant 36(5):319–330

    CAS  Google Scholar 

  50. Roy J, Naha S, Majumdar M, Banerjee N (2007) Direct and callus-mediated protocorm-like body induction from shoot-tips of dendrobium chrysotoxum lindl. (orchidaceae). Plant Cell Tissue Organ Cult 90(1):31–39

    CAS  Google Scholar 

  51. Rohela GK, Shabnam AA, Shukla P, Aurade R, Gani M, Yelugu S, Sharma S (2018) In vitro clonal propagation of ppr-1, a superior temperate mulberry variety. Indian J Biotechnol 17(4):619–625

    CAS  Google Scholar 

  52. Taha L, Sayed SS, Farahat M, El-Sayed I (2018) In vitro culture and bulblets induction of asiatic hybrid lily ‘red alert’. J Biol Sci 18:84–91

    CAS  Google Scholar 

  53. Dewir YH, Naidoo Y, da Silva JAT et al (2018) Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37(11):1451–1470

    CAS  PubMed  Google Scholar 

  54. Doležel J, Bartoš J (2005) Plant dna flow cytometry and estimation of nuclear genome size. Ann Bot 95(1):99–110

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Botany, Jamia Hamdard for providing laboratory facilities, Dr. Shwetanjali Nimker (Application Scientist) at BD-FACS, Jamia Hamdard, New Delhi, for providing flow cytometry facility; Dr Akhtar H Malik (Center for Biodiversity and Taxonomy, Department of Botany, University of Kashmir, Srinagar, India) for plant identification.

Funding

The doctoral research funding from Hamdard National Foundation, New Delhi, India in favor of the first author is duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

RS performed all the experiments and made the manuscript; others helped in making tables, figures and photoplates; and AM edited the manuscript before submission.

Corresponding author

Correspondence to A. Mujib.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not require any study with humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syeed, R., Mujib, A., Malik, M.Q. et al. Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry. Mol Biol Rep 48, 513–526 (2021). https://doi.org/10.1007/s11033-020-06083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06083-1

Keywords

Navigation