Skip to main content
Log in

Micropropagation and assessment of genetic fidelity of Henckelia incana: an endemic and medicinal Gesneriad of South India

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Henckelia incana is an endemic medicinal plant used for the treatment of fever and skin allergy. In the present study shoot regeneration was evaluated on Murashige and Skoog’s (MS) medium supplemented with auxins, Indole-3-acetic acid (IAA), Indole-3- butyric acid (IBA), 1-Naphthaleneacetic acid (NAA), 2, 4-Dichlorophenoxyacetic acid (2, 4-D) and cytokinins, 6-Benzylaminopurine (BAP) and Kinetin (Kn) at concentrations of 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mgl–1. MS medium with IBA (18.08), NAA (17.83) and IAA (17.58) at 0.5 mgl–1 concentrations showed efficient regeneration. Regenerated shoots were rooted on half-strength MS medium with and without 0.5 mgl–1 IBA or NAA. The plantlets were successfully hardened in rooting trays (peat, vermiculite and sand) and transferred to field mileu. The genetic fidelity of in vitro raised plants was assessed by using three different single primer amplification reaction (SPAR) markers namely random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and direct amplification of mini-satellite DNA region (DAMD). The results consistently demonstrated true-to-true type propagation. This is the first report of in vitro propagation and establishment of true-to-true type genetic fidelity in H. incana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Appelgren M, Helde Ola M (1972) Regeneration in Streptocarpus leaf disks and its regulation by temperature and growth substances. Physiol Plant 27:417–423

    Article  CAS  Google Scholar 

  • Cui J, Chen J, Henny RJ (2009) Regeneration of Aeschynanthus radicans via direct somatic embryogenesis and analysis of regenerants with flow cytometry. In vitro Cell Dev Biol Plant 45:34–43

    Article  CAS  Google Scholar 

  • Devi SP, Kumaria S, Rao SR, Tandon P (2014) Single primer amplification reaction (SPAR) methods reveal subsequent increase in genetic variations in micropropagated plants of Nepenthes khasiana Hook. f. maintained for three consecutive regenerations. Gene 538:23–29

    Article  CAS  PubMed  Google Scholar 

  • Dontcheva S, Daskalova E, Yahubyan G, Denev I, Minkov I, Toneva V (2009) Conservation of the protected resurrection species Ramonda serbica panč.-habitat Montana district, Bulgaria as in vitro plants through a modified micropropagation system. Biotechnol Biotechnol 23:369–372

    Article  Google Scholar 

  • Godo T, Lu Y, Mii M (2010) Micropropagation of Lysionotus pauciflorus Maxim. (Gesneriaceae). Method Mol Biol 587:127–139

    Article  Google Scholar 

  • Grunewaldt J (1977) Adventivknospenbildung und Pflanzenregeneration bei Gesneriaceae in vitro. Gartenbauwissenschaft 42:171–175

    Google Scholar 

  • Kholkute SD (2009) Database on ethnomedicinal plants of Western Ghats. Final report. Regional Medical Research Centre (ICMR), Belgaum

    Google Scholar 

  • Kottaimuthu R (2008) Ethnobotany of the Valaiyans of Karandamalai, Dindigul District, Tamil Nadu, India. Ethnobot Leaflets 12:195–203

    Google Scholar 

  • Kozak D, Hetman J, Witek M (2007) The influence of the mineral composition of the medium on in vitro propagation of Kohleria amabilis (Planch. ET Linden) Fritsch shoots. Acta Agrobot 60:95–99

    Article  Google Scholar 

  • Krishnarajah SA, Dhanasekera DMUB, Ratnayake RHPPM, Ratnayake RHBPM (2002) Utilization of wild flora to develop the floriculture industry. Ann Sri Lanka Dept Agric 4:151–159

    Google Scholar 

  • Li Q, Deng M, Zhang J, Zhao W, Song Y, Li Q, Huang Q (2013) Shoot organogenesis and plant regeneration from leaf explants of Lysionotus serratus. D. Don. Sci World J 2013:1–7

    Google Scholar 

  • Lo KH (1997) Factors affecting shoot organogenesis in leaf disc culture of African violet. Sci Hortic 72:49–57

    Article  CAS  Google Scholar 

  • Ma G, Jaime A, da Silva T, Lü J, Zhang X, Zhao J (2011) Shoot organogenesis and plant regeneration in Metabriggsia ovalifolia. Plant Cell Tiss Org 105:355–361

    Article  CAS  Google Scholar 

  • Matthew KM (1999) The Flora of the Palni Hills, South India. The Rapinat Herbarium, Tiruchirapalli, pp 909–910

    Google Scholar 

  • Murray MG, Thomson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park E-HO, Bae H, Park WT, Kim YB, Chae SC, Park SU (2012) Improved shoot organogenesis of gloxinia (Sinningia speciosa) using silver nitrate and putrescine treatment. Plant Omics J 5:6–9

    CAS  Google Scholar 

  • Qin G, Qin W, Wen F, Huang R, Yang Q (2013) Aseptic seeding, tissue culture and rapid propagation of Primulina hochiensis. Heilongjiang Agric Sci 8:14–17

    Google Scholar 

  • Sathyavathi R, Janardhanan KJ (2011) Folklore medicinal practices of Badaga community in Nilgiri biosphere reserve, Tamil Nadu, India. Int J Pharm Res Dev 3:50–63

    Google Scholar 

  • Shaib JM, Hapsah MG, Zulhazmi S (2004) Application of in vitro techniques in species conservation and micropropagation of Didymocarpus platypus. J Trop Agric Food Sci 32:81–84

    Google Scholar 

  • Shilpha J, Silambarasan T, Largia MJV, Ramesh M (2014) Improved in vitro propagation, solasodine accumulation and assessment of clonal fidelity in regenerants of Solanum trilobatum L. by flow cytometry and SPAR methods. Plant Cell Tiss Org 117:125–129

    Article  CAS  Google Scholar 

  • Siva R, Rajasekaran C, Mudgal G (2009) Induction of somatic embryogenesis and organogenesis in Oldenlandia umbellata L., a dye-yielding medicinal plant. Plant Cell Tiss Organ Cult 98:205–211

    Article  CAS  Google Scholar 

  • Siva R, Mayes S, Behera SK, Rajasekaran C (2012) Anthraquinones dye production using root cultures of Oldenlandia umbellata L. Ind Crop Prod 37:415–419

    Article  CAS  Google Scholar 

  • Takagi H, Sugawara S, Saito T, Tasaki H, Yuanxue L, Kaiyun G, Han DS, Godo T, Nakano M (2011) Plant regeneration via direct and indirect adventitious shoot formation and chromosome-doubled somaclonal variation in Titanotrichum oldhamii (Hemsl.) Solereder. Plant Biotechnol Rep 5:187–195

    Article  Google Scholar 

  • Tan X, Deng J, Xiao-yi Hu, Wu Y, Bao M (2009) Tissue Culture and Plant Regeneration in Chirita langshanica. Nonwood For Res 3

  • Tóth S, Scott P, Sorvari S, Toldi O (2004) Effective and reproducible protocols for in vitro culturing and plant regeneration of the physiological model plant Ramonda myconi (L.) Rchb. Plant Sci 166:1027–1034

    Article  Google Scholar 

  • Vazquez AM, Davey MR, Short KC (1977) Organogenesis in cultures of Saintpaulia ionantha. Acta Hortic 78:249–258

    Google Scholar 

  • Vlahos JC (1989) Regeneration of two cultivars of Achimenes longiflora DC. In vitro. Acta Hortic 251:255–273

    Google Scholar 

  • Vlahos JC, Dragassaki M, Vasilaki A, Assargiotaki I (1995) Microproagtion of Achimenes hybrids for winter production. HortSci 30:757

    Google Scholar 

  • Wei W, Hao Q, Zhi-gang C (2010) Studies on tissue culture of Streptocarpus wendlanddii. J Jilin Agric Univ 32:51–53

    Google Scholar 

  • Wuttisit M, Kanchanapoom K (1996) Tissue culture propagation of Gloxinia. Suranaree J Sci Technol 3:63–67

    Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ramakrishnaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prameela, J., Ramakrishnaiah, H., Krishna, V. et al. Micropropagation and assessment of genetic fidelity of Henckelia incana: an endemic and medicinal Gesneriad of South India. Physiol Mol Biol Plants 21, 441–446 (2015). https://doi.org/10.1007/s12298-015-0314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-015-0314-2

Keywords

Navigation