Skip to main content
Log in

In vitro genotoxicity assessment of the synthetic plant growth regulator, 1-naphthaleneacetamide

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

1-Naphthaleneacetamide (NAAm) is a synthetic plant growth regulator in the auxin family that is widely used in agriculture to promote the growth of numerous fruits, for root cuttings and as a fruit thinning agent. The potential genotoxic effects of NAAm were investigated in vitro by the chromosome aberrations (CAs), and cytokinesis-block micronucleus assays in human peripheral blood lymphocytes (PBLs) for the first time. The human PBLs were treated with 20, 40, 80, and 160 µg/mL of NAAm for 24 and 48 h. The results of this study showed that NAAm significantly induced the formation of structural CA and MN for all concentrations (20, 40, 80 and 160 µg/mL) and treatment periods (24 and 48 h) when compared with the negative and the solvent control. In addition, the higher concentrations of NAAm (80 and 160 µg/mL) caused a statistically significant increase in nuclear bud (NBUD) formation for both 24 and 48 h treatment times. With regard to the cell cycle kinetics, at all the tested concentrations, NAAm caused a statistically significant reduction in the mitotic index (MI) only for 48 h treatment period and also in the nuclear division index (NDI) for both 24 and 48 h treatment periods as compared to the control groups. The reductions in the MI and NDI occured in a concentration-dependent manner for both treatment times. In conclusion, the present results indicate that in the tested experimental conditions, NAAm was genotoxic and cytotoxic on human PBLs in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DEG, Tice R, Waters MD, Aitio A (2000) IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat Res 463:111–172

    Article  CAS  Google Scholar 

  • Amer SM, Aly FAE (2001) Genotoxic effect of 2,4-dichlorophenoxy acetic acid and its metabolite 2,4-dichlorophenol in mouse. Mutat Res 494:1–12

    Article  CAS  Google Scholar 

  • Ateeq B, Farah MA, Ali MN, Ahmad W (2002) Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test. Mutat Res 514:105–113

    Article  CAS  Google Scholar 

  • Bukowska B (2006) Toxicity of 2,4-dichlorophenoxyacetic acid-molecular mechanisms. Pol J Environ Stud 15:365–374

    CAS  Google Scholar 

  • Cenkci S, Yıldız M, Ciğerci İH, Bozdağ A, Terzi H, Terzi ESA (2010) Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicol Environ Saf 73:1558–1564

    Article  CAS  Google Scholar 

  • Da Silva ES, Wong-Wah-Chung P, Burrows HD, Sarakha M (2013) Photochemical degradation of the plant growth regulator 2-(1-naphthyl) acetamide in aqueous solution upon UV irradiation. Photochem Photobiol 89:560–570

    Article  Google Scholar 

  • Di Paolo O, de Duffard AM, Duffard R (2001) In vivo and in vitro binding of by 2,4-dichlorophenoxyacetic acid to a rat liver mitochondrial protein. Chem Biol Interact 137:229–241

    Article  Google Scholar 

  • Eastmond DA, Tucker JD (1989) Identification of aneuploidy-inducing agents using cytokinesis-blocked human lymphocytes and an anti-kinetochore antibody. Environ Mol Mutagen 13:34–43

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2011) Conclusion of the peer review of the pesticide risk assessment of the active substance 2-(1-naphthyl) acetamide (notified as 1-napthylacetamide). EFSA J 9:2020

    Article  Google Scholar 

  • Esparza X, Moyanoa E, Cosialls JR, Galceran MT (2013) Determination of naphthalene-derived compounds in apples by ultra-high performance liquid chromatography–tandem mass spectrometry. Anal Chim Acta 782:28–36

    Article  CAS  Google Scholar 

  • Evans HJ (1984) Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. In: Kilbey BJ, Legator M, Nichols W, Ramel C (eds) Handbook of mutagenicity test procedures, 2nd edn. Elsevier Science Publishers BV, Amsterdam, pp 405–427

    Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Article  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  CAS  Google Scholar 

  • Fenech M, Bonassi S (2011) The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis 26:43–49

    Article  CAS  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria fort he cytokinesis-block micronucleus assay using isolated human lymphocytes cultures. Mutat Res 534:65–75

    Article  CAS  Google Scholar 

  • Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132

    Article  CAS  Google Scholar 

  • Filkowski J, Besplug J, Burke P, Kovalchuk I, Kovalchuk O (2003) Genotoxicity of 2,4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harboring recombination and point mutation markers. Mutat Res 542:23–32

    Article  CAS  Google Scholar 

  • Gisselson D, Björk J, Höglund M, Mertens F, Dal Cin P, Åkerman M, Mandahl N (2001) Abnormal nuclear shape in solid tumors reflects mitotic instability. Am J Pathol 158:199–206

    Article  Google Scholar 

  • Gisselsson D, Pettersson L, Höglund M, Heidenbland M, Gorunova L, Wiegant J, Mertens F, Dal Cin P, Mitelman F, Mandahl N (2000) Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogenecity. Proc Natl Acad Sci USA 97:5357–5362

  • Gonzàlez NV, Soloneski SE, Larramendy ML (2006) Genotoxicity analysis of the phenoxy herbicide dicamba in mammalian cells in vitro. Toxicol In Vitro 20:1481–1487

    Article  Google Scholar 

  • Gonzàlez NV, Soloneski S, Larramendy ML (2007) The chlorophenoxy herbicide dicamba and its commercial formulation banvel® induce genotoxicity and cytotoxicity in Chinese hamster ovary (CHO) cells. Mutat Res 634:60–68

    Article  Google Scholar 

  • Gonzàlez NV, Soloneski S, Larramendy ML (2009) Dicamba-induced genotoxicity in Chinese hamster ovary (CHO) cells is prevented by vitamin E. J Hazard Mater 163:337–343

    Article  Google Scholar 

  • Gonzàlez NV, Nikoloff N, Soloneski S, Larramendy ML (2011) A combination of the cytokinesis-block micronucleus cytome assay and centromeric identification for evaluation of the genotoxicity of dicamba. Toxicol Lett 207:204–212

    Article  Google Scholar 

  • Holland NT, Duramad P, Rothman N, Figgs LW, Blair A, Hubbard A, Smith MT (2002) Micronucleus frequency and proliferation in human lymphocytes after exposure to herbicide 2,4-dichlorophenoxyacetic acid in vitro and in vivo. Mutat Res 521:165–178

    Article  CAS  Google Scholar 

  • Kawashima Y, Katoh H, Nakajima S, Kozuka H, Uchiyama A (1984) Effects of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid on peroxisomal enzymes in rat liver. Biochem Pharmacol 33:241–245

    Article  CAS  Google Scholar 

  • Kegley SE, Hill BR, Orme S, Choi AH (2011) PAN Pesticide Database, Pesticide Action Network, North America, San Francisco, CA. http://www.pesticideinfo.org

  • Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M Jr, Kirchner S, Lorge E, Morita T, Norppa H, Surrallés J, Vanhauwaert A, Wakata A (2003) Report from the in vitro micronucleus assay working group. Mutat Res 540:153–163

    Article  CAS  Google Scholar 

  • Kocaman AY, Rencüzoğulları E, Topaktaş M, İstifli ES, Büyükleyla M (2011) The effects of 4-thujanol on chromosome aberrations, sister chromatid exchanges, and micronucleus in human peripheral blood lymphocytes. Cytotechnology 63:493–502

    Article  CAS  Google Scholar 

  • Korte C, Jalal SM (1982) 2,4-D induced clastogenicity and elevated rates of sister chromatid exchanges in cultured human lymphocytes. J Hered 73:224–226

    CAS  Google Scholar 

  • Lindberg HK, Wang X, Järventaus H, Falck GC-M, Norppa H, Fenech M (2007) Origin of nuclear buds and micronuclei in normal and folate-deprived human lymphocytes. Mutat Res 617:33–45

    Article  CAS  Google Scholar 

  • Link H (2000) Significance of flower and fruit thinning on fruit quality. Planth Growth Reg 31:17–26

    Article  CAS  Google Scholar 

  • Linnainmaa K (1984) Induction of sister chromatid exchanges by the peroxisome proliferators 2,4-D, MCPA, and clofibrate in vivo and in vitro. Carcinogenesis 5:703–707

    Article  CAS  Google Scholar 

  • Mace ML Jr, Daskal Y, Wray W (1978) Scanning-electron microscopy of chromosome aberrations. Mutat Res 52:199–206

    Article  Google Scholar 

  • Madrigal-Bujaidar E, Hernàndez-Ceruelos A, Chamorro G (2001) Induction of sister chromatid exchanges by 2,4-dichlorophenoxyacetic acid in somatic and germ cells of mice exposed in vivo. Food Chem Toxicol 39:941–946

    Article  CAS  Google Scholar 

  • Mičić M, Bihari N, Mlinarič-Raščan I (2004) Influence of herbicide, 2,4-dichlorophenoxy acetic acid, on haemocyte DNA of in vivo treated mussel. J Exp Mar Biol Ecol 311:157–169

    Article  Google Scholar 

  • Mladinic M, Perkovic P, Zeljezic D (2009) Characterization of chromatin instabilities induced by glyphosate, terbuthylazine and carbofuran using cytome FISH assay. Toxicol Lett 189:130–137

    Article  CAS  Google Scholar 

  • Müller L, Sofuni T (2000) Appropriate levels of cytotoxicity for genotoxicity tests using mammalian cells in vitro. Environ Mol Mutagen 35:202–205

    Article  Google Scholar 

  • Paz-y-Miño C, Bustamante G, Sánchez ME, Leone PE (2002) Cytogenetic monitoring in a population occupationally exposed to pesticides in Ecuador. Environ Health Perspect 110:1077–1080

    Article  Google Scholar 

  • Reddy JK, Rao MS (1989) Oxidative DNA damage caused by persistent peroxisome proliferation: its role in hepatocarcinogenesis. Mutat Res 214:63–68

    Article  CAS  Google Scholar 

  • Rixe O, Fojo T (2007) Is cell death a critical end point for anticancer therapies or is cytostasis sufficient? Clin Cancer Res 13:7280–7287

    Article  CAS  Google Scholar 

  • Salopek-Sondi B, Piljac-Žegarac J, Magnus V, Kopjar N (2010) Free radical–scavenging activity and DNA damaging potential of auxins IAA and 2-methyl-IAA evaluated in human neutrophils by the alkaline comet assay. J Biochem Mol Toxicol 24:165–173

    Article  CAS  Google Scholar 

  • Song Y (2014) Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56:106–113

    Article  CAS  Google Scholar 

  • Tomlin CDS (2000) The pesticide manual, 12th edn. British Crop Protection Council Publisher, Farnham, p 661

    Google Scholar 

  • Tuschl H, Schwab C (2003) Cytotoxic effects of the herbicide 2,4-dichlorophenoxyacetic acid in HepG2 cells. Food Chem Toxicol 41:385–393

    Article  CAS  Google Scholar 

  • USEPA (Environmental Protection Agency from United States of America) (2007) 738-R-07-07017 (October 2007) Registration eligibility decision (RED) for Naphthaleneacetic acid, its salts, ester and acetamide. EPA, USA

  • Wolff S (1982) Chromosome aberrations, sister chromatid exchanges, and the lesions that produce them. In: Wolf S (ed) Sister chromatid exchange. John Wiley & Sons Inc., New York, pp 41–57

    Google Scholar 

  • Zeljezic D, Garaj-Vrhovac V (2004) Chromosomal aberrations, micronuclei and nuclear buds induced in human lymphocytes by 2,4-dichlorophenoxyacetic acid pesticide formulation. Toxicology 200:39–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Mustafa Kemal University Research Fund (project code: 281).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Yavuz Kocaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocaman, A.Y., Güven, B. In vitro genotoxicity assessment of the synthetic plant growth regulator, 1-naphthaleneacetamide. Cytotechnology 68, 947–956 (2016). https://doi.org/10.1007/s10616-015-9847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9847-z

Keywords

Navigation