Skip to main content
Log in

Advances in molecular marker techniques and their applications in plant sciences

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Detection and analysis of genetic variation can help us to understand the molecular basis of various biological phenomena in plants. Since the entire plant kingdom cannot be covered under sequencing projects, molecular markers and their correlation to phenotypes provide us with requisite landmarks for elucidation of genetic variation. Genetic or DNA based marker techniques such as RFLP (restriction fragment length polymorphism), RAPD (random amplified polymorphic DNA), SSR (simple sequence repeats) and AFLP (amplified fragment length polymorphism) are routinely being used in ecological, evolutionary, taxonomical, phylogenic and genetic studies of plant sciences. These techniques are well established and their advantages as well as limitations have been realized. In recent years, a new class of advanced techniques has emerged, primarily derived from combination of earlier basic techniques. Advanced marker techniques tend to amalgamate advantageous features of several basic techniques. The newer methods also incorporate modifications in the methodology of basic techniques to increase the sensitivity and resolution to detect genetic discontinuity and distinctiveness. The advanced marker techniques also utilize newer class of DNA elements such as retrotransposons, mitochondrial and chloroplast based microsatellites, thereby revealing genetic variation through increased genome coverage. Techniques such as RAPD and AFLP are also being applied to cDNA-based templates to study patterns of gene expression and uncover the genetic basis of biological responses. The review details account of techniques used in identification of markers and their applicability in plant sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RFLP:

Restriction fragment length polymorphism

RAPD:

Random amplified polymorphic DNA

AP-PCR:

Arbitrarily primed-PCR

DAF:

DNA amplification fingerprinting

AFLP:

Amplified fragment length polymorphism

SSR:

Simple sequence repeats

SNP:

Single nucleotide polymorphism

SSCP:

Single strand conformation polymorphism

CAPS:

Cleaved amplified polymorphic sequence

SCAR:

Sequence characterized amplified region

RAMP:

Randomly amplified microsatellite polymorphisms

TRAP:

Target region amplification polymorphism

SRAP:

Sequence-related amplified polymorphism

IRAP:

Inter-retrotransposon amplified polymorphism

REMAP:

REtransposon-microsatellite amplified polymorphism

TD:

Transposable display

MITES:

Miniature inverted repeat transposable elements

IMP:

Inter-MITE polymorphism

S-SAP:

Sequence-specific amplification polymorphism

RBIP:

Retrotransposon-based insertion polymorphism

RAP-PCR:

RNA fingerprinting by arbitrarily primed PCR

References

  • Adam-Blondon AF, Sevignac M, Bannerot H, Dron M (1994) SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor Appl Genet 88:865–870

    Article  CAS  Google Scholar 

  • Akihiro T, Umezawa T, Ueki C, Lobna B, Mizuno K, Ohta M, Fujimura T (2006) Genome wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Lett 580(25):5947–5995

    Article  PubMed  CAS  Google Scholar 

  • Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol 56:477–484

    Article  PubMed  CAS  Google Scholar 

  • Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collection. Crop Sci 46:448–455

    Article  CAS  Google Scholar 

  • Bachem CWB, van der Hoeve RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bachem CWB, Oomen RJFJ, Visser GF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep 16:157

    Article  CAS  Google Scholar 

  • Bardakci F (2001) Random amplified polymorphic DNA (RAPD) markers. Turk J Biol 25:185–196

    CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–333

    PubMed  CAS  Google Scholar 

  • Branco CJS, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, Mistura CC, Carvalho FIF, Oliveira CA (2007) IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet 48:107–113

    PubMed  Google Scholar 

  • Bucci G, Anzidei M, Madaghiele A, Vendramin GG (1998) Detection of haplotypic variation and natural hybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Mol Ecol 7:1633–1643

    Article  CAS  Google Scholar 

  • Buetow KH, Edmonson MN, Cassidy AB (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat Genet 21:323–332

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anollés G, Bassam BJDNA (1993) Amplification fingerprinting using arbitrary oligonucleotide primers. App Biochem Biotechnol 42:189–200

    Article  Google Scholar 

  • Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR (2000) The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci USA 97:10083–10089

    Article  PubMed  CAS  Google Scholar 

  • Chang RY, O’Donoughue LS, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102:773–781

    Article  CAS  Google Scholar 

  • Chelkowski J, Stêpieñ L (2001) Molecular markers for leaf rust resistance genes in wheat. J Appl Genet 42:117–126

    PubMed  CAS  Google Scholar 

  • Cheng H-Y, Yang W-C, Hsiao J-Y (2001) Genetic diversity and relationship among peach cultivars based on random amplified microsatellite polymorphism (RAMP). Bot Bull Acad Sin 42:201–206

    CAS  Google Scholar 

  • Ching ADA, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski A (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  Google Scholar 

  • Chung S-M, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxan. Theor Appl Genet 107:757–776

    Article  PubMed  CAS  Google Scholar 

  • Clark CM, Wentworth TM, Malley DMO (2000) Genetic discontinuity revealed by chloroplast microsatellites in eastern North American Abies (Pinaceae). Am J Bot 87:774–778

    Article  PubMed  Google Scholar 

  • Cronn RC, Adams KL (2003) Quantitative analysis of transcript accumulation from genes duplicated by polyploidy using cDNA-SSCP. Biotechniques 34:726–734

    PubMed  CAS  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Knox M, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–665

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka S, Inoue T, Miyao A, Monna L (1994) Mapping of sequence-tagged sites in rice by single conformation polymorphism. DNA Res 1:271–277

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Grzebelus D (2006) Transposon insertion polymorphism as a new source of molecular markers. J Fruit Ornam Plant Res 14:21–29

    CAS  Google Scholar 

  • Gulsen O, Karagul S, Abak K (2006) Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia 62:41–45

    Article  CAS  Google Scholar 

  • Guo W, Zhang T, Shen X, Yu JZ, Kohel RJ (2003) Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton. Crop Sci 43:2252–2256

    Article  CAS  Google Scholar 

  • Hafez EE, Ghany AGAA, Zakil EA (2006) LTR-retrotransposons-based molecular markers in cultivated Egyptian cottons G. barbadense L. Afr J Biotechnol 5:1200–1204

    CAS  Google Scholar 

  • Haliassos A, Chomel JC, Tesson L, Baudis M, Kruh J, Kaplan JC, Kitzis A (1989) Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res 17:3606

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K (1992) PCR-SSCP—rapid and easy detection of DNA-sequence changes. Hum Cell 5:180–184

    PubMed  CAS  Google Scholar 

  • Hayashi K (1993) How sensitive is PCR-SSCP? Hum Mutat 2:338–346

    Article  PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG Lawson DM (1994) Molecular marker linkage map for apple. J Heredity 85:4–11

    CAS  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    CAS  Google Scholar 

  • Hu J, Ochoa OE, Truco MJ, Vick BA (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica 144:225–235

    Article  CAS  Google Scholar 

  • Huang J, Sun M (1999) A modified AFLP with fluorescence-labelled primers and automated DNA sequencer detection for efficient fingerprinting analysis in plants. Biotechnol Techn 14:277–278

    Article  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kiss GB, Csanadi G, Kalman K, Kalo P, Okresz L (1993) Construction of a basic linkage map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238:129–137

    PubMed  CAS  Google Scholar 

  • Komori T, Nitta N (2005) Utlization of CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci 55:93–98

    Article  CAS  Google Scholar 

  • Konieczny A, Ausubel FM (1993) Procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Kumar A (1996) The adventures of the Ty1-Copia group of retrotransposons in plants. Trends Genet 12:41–43

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–546

    Article  CAS  Google Scholar 

  • Li L, Strahwald J, Hofferbert HR, Lübeck J, Tacke E, Junghans H, Wunder J, Gebhardt C (2005) DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 170:813–882

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–997

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  PubMed  CAS  Google Scholar 

  • Makino R, Yazyu H, Kishimoto Y, Sekiya T, Hayashi K (1992) F-SSCP (fluorescence-based polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis. PCR Methods Appl 2:10–13

    PubMed  CAS  Google Scholar 

  • Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci 88:2336–2340

    Article  PubMed  CAS  Google Scholar 

  • McDermott JM, Brandle U, Dutly F, Haemmerli UA, Keller S, Muller KE, Wolf MS (1994) Genetic variation in powdery mildew of barley: development of RAPD, SCAR and VNTR markers. Phytopathology 84:1316–1321

    Article  CAS  Google Scholar 

  • Mian MAR, Hopkins AA, Zwonitzer JC (2002) Determination of genetic diversity in tall fescue with AFLP markers. Crop Sci 42:944–950

    Article  Google Scholar 

  • Michaels SD, Amasino RMA (1998) A robust method for detecting single nucleotide changes as polymorphic markers by PCR. Plant J 14:381–385

    Article  PubMed  CAS  Google Scholar 

  • Mullis KB, Faloona F (1987) Specific synthesis of DNA in vitro via polymerase chain reaction. Methods Enzymol 155:350–355

    Google Scholar 

  • Nair AS, Teo CH, Schwarzacher T, Heslop Harrison P (2005) Genome classification of banana cultivars from South India using IRAP markers. Euphytica 144:285–290

    Article  CAS  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  PubMed  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphism. Proc Natl Acad Sci USA 86:2766–2770

    Article  PubMed  CAS  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–999

    Article  CAS  Google Scholar 

  • Paran I, Kesseli R, Michelmore R (1991) Identification of restriction-fragment-length-polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near isogenic lines. Genome 34:1021–1027

    PubMed  CAS  Google Scholar 

  • Parducci L, Szmidt AE, Madaghiele A, Anzidei M, Vendramin GG (2001) Genetic variation at chloroplast microsatellites (cpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor Appl Genet 102:733–740

    Article  CAS  Google Scholar 

  • Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group of retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  PubMed  CAS  Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Marconi G, Bertoli FB, Veronesi F (2002) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Genet Genomics 267:107–114

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions chloroplast genomes: applications to the population genetics of pines. Popul Biol 92:7759–7763

    CAS  Google Scholar 

  • Provan J, Russell JR, Booth A, Powell W (1999a) Polymorphic chloroplast simple-sequence repeat primers for systematic and population studies in the genus Hordeum. Mol Ecol 8:505–511

    Article  PubMed  CAS  Google Scholar 

  • Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell WA (1999b) Low mutation rate for chloroplast microsatellites. Genetics 153:943–947

    PubMed  CAS  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and systematics. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Provan J, Biss PM, Mcmee D, Mathews S (2004) Universal primers for the amplification of chloroplast microsatellites in grasses (Poaceae). Mol Ecol Notes: Primer Note

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics 271:91–97

    Article  PubMed  CAS  Google Scholar 

  • Rajendrakumar P, Biswal AK, Balachandran SM, Ramesha MS, Viraktamath BC, Sundaram RMA (2007) Mitochondrial repeat specific marker for distinguishing wild abortive type cytoplasmic male sterile rice lines from their cognate isogenic maintainer lines. Crop Sci 47:207–211

    Article  CAS  Google Scholar 

  • Richard I, Beckman JS (1995) How neutral are synonymous codon mutations? Nat Genet 10:259

    Article  PubMed  CAS  Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  PubMed  CAS  Google Scholar 

  • Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    Article  PubMed  CAS  Google Scholar 

  • Sanchez de la Hoz MP, Davila JP, Loarce Y, Ferrer E (1996) Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome 39:112–117

    Article  Google Scholar 

  • Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:2211–2215

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Sederoff RR, Levings CS, Timothy DH, Hu WWL (1981) Evolution of DNA sequence organization in mitochondrial genomes of Zea. Proc Natl Acad Sci USA 78:5953–5957

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT Schilling EE, Small R (2005) The tortoise and Hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  CAS  Google Scholar 

  • Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retrotransposons that whales form a clade within even-toed ungulates. Nature 388:666–670

    Article  PubMed  CAS  Google Scholar 

  • Sobrino B, Briona M, Carracedoa A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194

    Article  PubMed  CAS  Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2003) Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley. Plant Mol Biol Rep 21:281–288

    CAS  Google Scholar 

  • Soranzo N, Provan J, Powell W (1999) An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42:158–161

    Article  PubMed  CAS  Google Scholar 

  • Spaniolas S, May ST, Bennett MJ, Tuker GA (2006) Authentication of coffee by means of PCR-RFLP analysis and lab-on-a chip capillary electrophoresis. J Agric Food Chem 54:7466–7470

    Article  PubMed  CAS  Google Scholar 

  • Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, Vendramin GG (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263

    Article  PubMed  CAS  Google Scholar 

  • Sunyaev S, Hanke J, Aydin A, Wirkner U, Zastrow I, Reich J, Bork P (1999) Prediction of nonsynonymous single nucleotide polymorphisms in human disease-associated genes. J Mol Med 77:754–760

    Article  PubMed  CAS  Google Scholar 

  • Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    Article  PubMed  CAS  Google Scholar 

  • Syed NH, Sureshundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJV, Flavell AJ (2005) Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet 110:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12(10):4127–4138

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Torress AM, Weeden NF, Martin A (1993) Linkage among isozyme, RFLP, and RAPD markers. Plant Physiol 101:394–452

    Google Scholar 

  • van de Wiel C, Arens P, Vosman B (1999) Microsatellite retrieval in lettuce (Lactuca sativa L.). Genome 42:139–149

    Article  PubMed  Google Scholar 

  • van den Broeck D, Maes T, Sauer M, Zethof J, De Keukeleire P, D’Hauw M, Van Montagu M, Gerats T (1998) Plant J 13:121–129

    Article  PubMed  Google Scholar 

  • van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA finger-printing based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Roderme SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas WTB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (SSAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • Weiland JJ, Yu MH (2003) A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet. Crop Sci 43:814–881

    Article  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–11

    Article  PubMed  CAS  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Welsh J, Chada K, Dalal SS, Ralph D, Cheng R McClelland M (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res 20:4965–4970

    Article  PubMed  CAS  Google Scholar 

  • Wenz HM, Robertson JM, Menchen S, Oaks F, Demorest DM, Scheibler D, Rosenblum BB, Wike C, Gilbert DA, Efcavitch JW (1998) High-precision genotyping by denaturing capillary electrophoresis. Genome Res 3:69–80

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1991) DNA polymorphisms amplified by arbitrary primers are usefμl as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNA. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235

    Article  PubMed  CAS  Google Scholar 

  • Wu KS, Jones R, Danneberger L, Scolnik P (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res 22:3257–3258

    Article  PubMed  CAS  Google Scholar 

  • Yaa YX, Li M, Liu Z, Hao YJ Zhai H (2007) A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple. Plant Physiol Biochem 45:139–145

    Article  CAS  Google Scholar 

  • Yin X, Stam P, Dourleijn CJ, Kropff MJ (1999) AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99:244–253

    Article  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice Genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski JA, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain-reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Padh.

Additional information

Communicated by P. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, M., Shrivastava, N. & Padh, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27, 617–631 (2008). https://doi.org/10.1007/s00299-008-0507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0507-z

Keywords

Navigation