Skip to main content

Role of Phosphate-Solubilizing Microbes in the Enhancement of Fertilizer Value of Rock Phosphate Through Composting Technology

  • Chapter
  • First Online:
Role of Rhizospheric Microbes in Soil

Abstract

Preparation and use of enriched compost has become an important component of sustainable agriculture and received much interest in recent years as a means of alternative utilization of crop residues and low-grade minerals like rock phosphate (RP) by composting technology, thus reducing the ill effects of residue burning as well as improving the P content. The process has many advantages including sanitation, mass and bulk reduction, and decrease in carbon-to-nitrogen (C/N) ratio of crop residues. The performance of compost depends on the quality of the substrate. However, composts prepared from farm wastes have low nutrient content, particularly phosphorus (P) and potassium (K), and are considered poor suppliers of nutrients to crops. A possible means of improving the nutrient content, after prepare enriched compost by addition of low-grade RP and microbial techniques for RP solubilization. It will not only help farmers in supplying plant nutrients at a very low investment but also keep the environment pollution-free. The mineralization of insoluble forms of P present in RP by organic acids released during decomposition of organic matter is the major advantage of preparation of enriched compost. Organic acids released from the various organic materials used in the composting help in breaking down the RP faster during the composting period by pushing the dissolution reaction to the forward direction. The availability of P also increases due to inoculation with PSM, which are also known to produce organic acids. These acids are able to dissolve the mineral phosphate and make it available for the plant. The composting of organic wastes with RP has been demonstrated to be an effective method for producing end-products which are ensuring their maximum benefit for agriculture. Here, we emphasize pre-application techniques, especially the co-composting of RP with various organic by-product materials that include crop residues. A range of laboratory incubations have demonstrated the underlying mechanisms involved with solubilization. The significance of microbial induced production of organic acids and acidity during composting is particularly important in this respect. Inoculation with Aspergillus awamori into the composting mass increased the content of total P (2.35%) as well as water-soluble P (0.05% P) and citrate-soluble P (0.85% P) significantly. While co-composting with RP offers a great potential that could be developed for use at the individual farm scale, the key controlling factors and underlying mechanisms are far from being fully understood. Studies on synchronization of nutrient mineralization and crop demand will provide information on the efficient use of RP-enriched compost in a more integrated manner with inorganic fertilizers for achieving sustainable higher crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

N:

Nitrogen

P:

Phosphorus

PSB:

Phosphate-solubilizing bacteria

PSF:

Phosphate-solubilizing fungi

PSM:

Phosphate-solubilizing microorganisms

RP:

Rock phosphate

WSP:

Water-soluble P

CSP:

Citrate-soluble P

References

  • Agyin-Birikorang S, Abekoe MK, Oladeji OO (2007) Enhancing the agronomic effectiveness of natural phosphate rock with poultry manure: a way forward to sustainable crop production. Nutr Cycl Agroecosyst 79:113–123

    Article  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. https://doi.org/10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Anderson DL, Kussow WR, Corey RB (1985) Phosphate rock dissolution in soil: indications from plant growth studies. Soil Sci Soc Am J 49:918–925

    Article  Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    Article  CAS  Google Scholar 

  • Ayuso M, Hernandez T, Garcia C, Pascual JA (1996) Biochemical and chemical structural characterization of different organic materials used as manures. Bioresour Technol 57:201–207

    Article  CAS  Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58

    Article  CAS  Google Scholar 

  • Badanur VP, Poleshi CM, Naik BK (1990) Effect of organic matter on crop yield and physical and chemical properties of a vertisol. J Indian Soc Soil Sci 38:426

    Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. https://doi.org/10.1007/978-81-322-2776-2_18

    Chapter  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. https://doi.org/10.1080/01490451.2016.1219431

  • Bangar KC, Yadav KS, Mishra MM (1985) Transformation of rock phosphate during composting and the effect of humic acid. Plant Soil 85:259–266

    Article  CAS  Google Scholar 

  • Banik S, Dey BK (1983) Phosphate solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralbl Microbiol 138:17–23

    CAS  Google Scholar 

  • Barreto TR, da Silva ACM, Soares ACF, de Souza JT (2008) Population densities and genetic diversity of Actinomycetes associated to the rhizosphere of Theobroma cacao. Braz J Microbiol 39:464–470

    Article  PubMed  PubMed Central  Google Scholar 

  • Basak BB, Biswas DR (2016) Potentiality of Indian rock phosphate as liming material in acid soil. Geoderma 263:104–109

    Article  CAS  Google Scholar 

  • Beck-Friis B, Smars S, Jonsson H, Kirchmann H (2001) Emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J Agric Eng Res 78(4):423–430

    Article  Google Scholar 

  • Ben Farhat M, Farhat A, Bejar W, Kammoun R, Bouchaala K, Fourati A, Antoun H, Bejar S, Chouayekh H (2009) Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol 191:815–824

    Article  PubMed  CAS  Google Scholar 

  • Bharadwaj KKR (1995) Improvements in microbial compost technology: a special reference to microbiology of composting. In: Khanna S, Mohan K (eds) Wealth from waste. Tata Energy Research Institute, New Delhi, pp 115–135

    Google Scholar 

  • Biswas DR (2008) Production of enriched compost. ICAR News Lett 14:3

    Google Scholar 

  • Biswas DR (2011) Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr Cycl Agroecosyst 89:15–30

    Article  Google Scholar 

  • Biswas DR, Narayanasamy G (2002) Mobilization of phosphorus from rock phosphate through composting using crop residue. Fert News 47:53–56

    CAS  Google Scholar 

  • Biswas DR, Narayanasamy G (2006) Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresour Technol 97:2243–2251

    Article  PubMed  CAS  Google Scholar 

  • Biswas DR, Narayanasamy G, Datta SC, Geeta S, Mamata B, Maiti D, Mishra A, Basak BB (2009) Changes in nutrient status during preparation of enriched organomineral fertilizers using rice straw, low-grade rock phosphate, waste mica, and phosphate solubilizing microorganism. Commun Soil Sci Plant Anal 40:2285–2307

    Article  CAS  Google Scholar 

  • Bolan NS, Hedley MJ (1990) Dissolution of phosphate rocks in soils. 2. Effect of pH on the dissolution and plant availability of phosphate rock in soil with pH dependent charge. Fert Res 24:125–134

    Article  CAS  Google Scholar 

  • Bolan NS, White RE, Hedley MJ (1990) A review of the use of phosphate rocks as fertilisers for direct application in Australia and New Zealand. Aust J Exp Agric 30:297–313

    Article  CAS  Google Scholar 

  • Borie F, Zunino H, Martinez L (1989) Macromolecule-P associations and inositol phosphates in some Chilean volcanic soils of temperate regions. Commun Soil Sci Plant Anal 20(17and18):1881–1894

    Article  CAS  Google Scholar 

  • Browne P, Rice O, Miller SH, Burke J, Dowling DN, Morrissey JP, O’Gara F (2009) Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl Soil Ecol 43:131–138

    Article  Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chien SH, Menon RG (1995) Factors affecting the agronomic effectiveness of phosphate rock for direct application. Fert Res 41:227–234

    Article  Google Scholar 

  • Chuang CC, Kuo YL, Chao CC, Chao WL (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43:575–584

    Article  CAS  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. https://doi.org/10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • de Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manag Res 1:157–176

    Article  Google Scholar 

  • Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    Article  CAS  Google Scholar 

  • Diaz MJ, Madejon E, Lopez F, Lopez R, Cabrera F (2002) Composting of vinasse and cotton gin waste by using two different systems. Resour Conserv Recycl 34:235–248

    Article  CAS  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. https://doi.org/10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. https://doi.org/10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282

    Article  CAS  Google Scholar 

  • Dwivedi BS, Singh VK, Dwivedi V (2004) Application of phosphate rock, with or without Aspergillus awamori inoculation, to meet phosphorus demands of rice-wheat systems in the Indo-Gangetic plains of India. Aust J Exp Agric 44:1041–1050

    Article  CAS  Google Scholar 

  • Escudey M, Galindo G, FÓ§rster JE, Briceno M, Diaz P, Chang A (2001) Chemical forms of phosphorus of volcanic ash-derived soils in Chile. Commun Soil Sci Plant Anal 32(5 and 6):601–616

    Article  CAS  Google Scholar 

  • FAI (2013) Fertiliser statistics (2012–13). The Fertiliser Association of India, New Delhi

    Google Scholar 

  • Fogarty AM, Tuovinen OH (1991) Microbiological degradation of pesticides in yard waste composting. Microbiol Rev 55:225–233

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gagnon B, Simard RR (1999) Nitrogen and phosphorus release from on-farm and industrial composts. Can J Soil Sci 79:481–489

    Article  Google Scholar 

  • Gaind S, Nain L, Patel VB (2009) Quality evaluation of co-composted wheat straw, poultry droppings and oil seed cakes. Biodegradation 20:307–317

    Article  PubMed  Google Scholar 

  • Garcia C, Hernandez T, Costa F, Ayusho M (1992) Evaluation of maturity of municipal waste compost using simple chemical parameters. Commun Soil Sci Plant Anal 23:1501–1512

    Article  Google Scholar 

  • Garg S, Bahl GG (2008) Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresour Technol 99:5773–5777

    Article  PubMed  CAS  Google Scholar 

  • Ghani A, Rajan SSS, Lee A (1994) Enhancement of rock phosphate solubility through biological processes. Soil Biol Biochem 26:127–136

    Article  CAS  Google Scholar 

  • Godden B, Penninckx M, Perard A, lannoye R (1983) Evolution of enzyme activities during composting of cattle manure. Eur J Appl Microbiol Biotechnol 134:2441–2448

    Google Scholar 

  • Goenadi DH, Siswanto SY (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci Soc Am J 64:927–932

    CAS  Google Scholar 

  • Golueke CG (1981) Principles of biological resource recovery. Biocycle 22:36–40

    CAS  Google Scholar 

  • Gunes A, Ataoglu N, Turan M, Esitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Podle PS, Collins MD, Hutson RA, Naresh KG (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hamdali H, Smirnov A, Esnault C, Ouhdouch Y, Virolle MJ (2010) Physiological studies and comparative analysis of rock phosphate solubilization abilities of Actinomycetales originating from Moroccan phosphate mines and of Streptomyces lividans. Appl Soil Ecol 44:24–31

    Article  Google Scholar 

  • Hammond LL, Chien SH, Mokwunye AU (1986) Agronomic value of unacidulated and partially acidulated phosphate rocks indigenous to the tropics. Adv Agron 40:89–140

    Article  CAS  Google Scholar 

  • Hariprasad P, Navya HM, Nayaka SC, Niranjana SR (2009) Advantage of using PSIRB over PSRB and IRB to improve plant health of tomato. Biol Control 50:307–316

    Article  Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (2000) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286

    Article  CAS  Google Scholar 

  • Hellal FA, Nagumo F, Zewainy RM (2012) Influence of phospho-composting on enhancing phosphorus solubility from inactive rock phosphate. Aust J Basic Appl Sci 6(5):268–276

    CAS  Google Scholar 

  • Helling CS, Chesters G, Corey RB (1964) Contribution of organic matter and clay to soil cation exchange capacity as affected by the pH of the saturating solution. Soil Sci Soc Am Proc 28:517–520

    Article  CAS  Google Scholar 

  • Hilda R, Fraga R (2000) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–359

    Google Scholar 

  • Hoberg E, Marschner P, Lieberei R (2005) Organic acid exudation and pH changes by Gordonia sp and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiol Res 160:177–187

    Article  PubMed  CAS  Google Scholar 

  • Hong-Qing H, Xue-Yuan L, Jing-Fu L, Feng-Lin X, Jing L, Fan L (1997) The effect of direct application of phosphate rock on increasing crop yield and improving properties of red soil. Nutr Cycl Agroecosyst 46:235–239

    Article  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Intorne AC, de Oliveira MVV, Lima ML, da Silva JF, Olivares FL, de Souza GA (2009) Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Arch Microbiol 191:477–483

    Article  PubMed  CAS  Google Scholar 

  • Isherwood KF (2000) Mineral fertilizer use and the environment. International Fertilizer Industry Association/United Nations Environment Programme, Paris

    Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. https://doi.org/10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. https://doi.org/10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Jimenez I, Garcia P (1992) Determination of maturity indices for city refuse composts. Agric Ecosyst Environ 38:331–343

    Article  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora MD (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agric For 31:355–362

    CAS  Google Scholar 

  • Khiari L, Parent LE (2005) Phosphorus transformations in acid light-textured soils treated with dry swine manure. Can J Soil Sci 85:75–87

    Article  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilising bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Kostov O, Rankov V, Atanacova G, Lynch JM (1991) Decomposition of sawdust and bark treated with cellulose-decomposing microorganisms. Biol Fertil Soils 11:105–110

    Article  CAS  Google Scholar 

  • Kucey RMN, Jenzen HH, Leggett ME (1989) Microbially mediated increases in plant available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. https://doi.org/10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul 36:608. https://doi.org/10.1007/s00344-016-9663-5

    Article  CAS  Google Scholar 

  • Makarov MI, Haumaier L, ZechW MOE, Lysak LV (2005) Can 31P NMR spectroscopy be used to indicate the origins of soil organic phosphates? Soil Biol Biochem 37:15–25

    Article  CAS  Google Scholar 

  • Makela M, Galkin S, Hatakka A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white-rot fungi. Enzym Microb Technol 30:542–549

    Article  CAS  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. https://doi.org/10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Medhi DN, De Datta SK (1997) Phosphorus availability to irrigated lowland rice as affected by sources, application level, and green manure. Nutr Cycl Agroecosyst 46:195–203

    Article  Google Scholar 

  • Meena MD, Biswas DR (2014) Phosphorus and potassium transformations in soil amended with enriched compost and chemical fertilizers in a wheat–soybean cropping system. Commun Soil Sci Plant Anal 45:624–652

    Article  CAS  Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1–3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  PubMed  CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J. Bottomline 44(1):143–146

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. https://doi.org/10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. https://doi.org/10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. https://doi.org/10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer International Publishing, Cham, pp 367–395. https://doi.org/10.1007/978-3-319-44409-3_16

    Chapter  Google Scholar 

  • Milagres AMF, Arantes V, Medeiros CL, Machuca A (2002) Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzym Microb Technol 30:562–565

    Article  CAS  Google Scholar 

  • Mishra MM, Khurana AL, Dudeja SS, Kapoor KK (1984) Effect of phosphocompost on the yield and P uptake of red gram (Cajanus cajan (L.) Millsp.). Trop Agric (Trinidad) 61:174–176

    Google Scholar 

  • MNRE (Ministry of New and Renewable Energy Resources) (2009) Govt. of India, New Delhi. www.mnre.gov.in/biomassrsources

  • MoA (Ministry of Agriculture) (2012) Govt. of India, New Delhi. www.eands.dacnet.nic.in

  • Moharana PC, Biswas DR (2016) Assessment of maturity indices of rock phosphate enriched composts using variable crop residues. Bioresour Technol 222:1–13

    Article  PubMed  CAS  Google Scholar 

  • Moharana PC, Biswas DR, Datta SC (2015) Mineralization of nitrogen, phosphorus and Sulphur in soil as influenced by rock phosphate enriched compost and chemical fertilizers. J Indian Soc Soil Sci 63:283–293

    Article  Google Scholar 

  • Muthukumar G, Mahadevan A (1983) Microbial degradation of lignin. J Sci Ind Res 42:518–528

    CAS  Google Scholar 

  • Mutuo PK, Smithson PC, Buresh RJ, Okalebo RJ (1999) Comparison of phosphate rock and triple superphosphate on a phosphorus-deficient Kenyan soil. Commun Soil Sci Plant Anal 30:1091–1103

    Article  CAS  Google Scholar 

  • Narayanasamy G, Biswas DR (1998) Phosphate rocks of India – potentialities and constraints. Fert News 43(10):21–28. 31–32

    Google Scholar 

  • Nishanth D, Biswas DR (2008) Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresour Technol 99:3342–3353

    Article  PubMed  CAS  Google Scholar 

  • Nowack B (2003) Environmental chemistry of phosphonates. Water Res 37:2533–2546

    Article  PubMed  CAS  Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675

    Article  CAS  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Parfitt RL, Yeates GW, Ross DJ, Mackay AD, Budding PJ (2005) Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Appl Soil Ecol 28:1–13

    Article  Google Scholar 

  • Patel DK, Archana G, Naresh Kumar G (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 65:168–174

    Article  CAS  Google Scholar 

  • Pathak H, Bhatia A, Jain N, Aggarwal PK (2010) Greenhouse gas emission and mitigation in Indian agriculture – a review. In: Bijay-Singh (ed) ING bulletins on regional assessment of reactive nitrogen, bulletin no. 19. SCON-ING, New Delhi, pp 1–34

    Google Scholar 

  • Poincelot RP (1974) A scientific examination of the principles and practice of composting. Compost Sci 15:24–31

    CAS  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. https://doi.org/10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. https://doi.org/10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. https://doi.org/10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Rajan SSS, Fox RL, Saunders WMH, Upsdell MP (1991) Influence of pH, time and rate of application on phosphate rock dissolution and availability to pastures. II. Soil chemical studies. Fert Res 28:95–101

    Article  CAS  Google Scholar 

  • Rashad FM, Saleh WD, Moselhy MA (2010) Bioconversion of rice straw and certain agro-industrial wastes to amendments for organic farming systems: 1. Composting, quality, stability and maturity indices. Bioresour Technol 101:5952–5960

    Article  PubMed  CAS  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. https://doi.org/10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Reddy DD (2007) Phosphorus Solubilization from low-grade rock phosphates in the presence of decomposing soybean leaf litter. Commun Soil Sci Plant Anal 38(1–2):283–291

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    Article  CAS  Google Scholar 

  • Robinson JS, Syers JK (1990) A critical evaluation of the factors influencing the dissolution of Gafsa phosphate rock. J Soil Sci 41:597–605

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Can J Microbiol 51:217–222

    Article  PubMed  CAS  Google Scholar 

  • Sagoe CI, Ando T, Kouno K, Nagaoka T (1998) Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Sci Plant Nutr 44:617–625

    Article  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. https://doi.org/10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Sahu MK, Sivakumar K, Thangaradjou T, Kannan L (2007) Phosphate solubilizing Actinomycetes in the estuarine environment: an inventory. J Environ Biol 28:795–798

    PubMed  CAS  Google Scholar 

  • Sanyal SK, De Datta SK (1991) Chemistry of phosphorus transformations in soil. Adv Soil Sci 16:37–55

    Google Scholar 

  • Saritha M, Arora A, Singh S, Nain L (2013) Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresour Technol 135:12–17

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Canditelli M, Fortuna F, Cornacchia G (1997) Processing of urban and agro-industrial residues by aerobic composting: review. Energy Convers Manag 38:453–478

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. https://doi.org/10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shrivastava M, Kale SP, D’Souza SF (2011) Rock phosphate enriched post-methanation bio-sludge from kitchen waste based biogas plant as P source for mungbean and its effect on rhizosphere phosphatase activity. Eur J Soil Biol 47:205–212

    Article  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. https://doi.org/10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. https://doi.org/10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singal R, Gupta R, Saxena RK (1994) Rock phosphate solubilization under alkaline conditions by Aspergillus japonicus and A. foetidus. Folia Microbiol 39:33–36

    Article  CAS  Google Scholar 

  • Singh CP, Amberger A (1995) The effect of rock phosphate-enriched compost on the yield and phosphorus nutrition of rye grass. Am J Altern Agric 10:82–87

    Article  Google Scholar 

  • Singh CP, Amberger A (1998) Organic acids and phosphorus solubilization in straw composted with rock phosphate. Bioresour Technol 63:13–16

    Article  CAS  Google Scholar 

  • Singh CP, Mishra MM, Yadav KS (1980) Solubilization of insoluble phosphates by thermophilic fungi. Annal Microbiol (L Institut Pasteur) 131 B:289–296

    CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. https://doi.org/10.5958/2229-4473.2015.00012.9

    Article  Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. https://doi.org/10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Sperber JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res 9:778–781

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis. Part II–Microbiological and biochemical properties, Book series No. 5, SSSA, Madison, pp 775–833

    Google Scholar 

  • Taha SM, Mahmoud SAZ, El-Damaty AA, Abd El- Hafez AM (1969) Activity of phosphate dissolving bacteria in Egyptian soil. Plant Soil 31:149

    Article  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. https://doi.org/10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Tiquia SM (2005) Microbiological parameters as indicators of compost maturity. J Appl Microbiol 99:816–828

    Article  PubMed  CAS  Google Scholar 

  • Tiquia SM, Richard TL, Honeyman MS (2002) Carbon, nutrient, and mass loss during composting. Nutr Cycl Agroecosyst 62:15–24

    Article  CAS  Google Scholar 

  • Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P (2003) Progress in selected areas of rhizosphere research on P acquisition. Aust J Soil Res 41:471–499

    Article  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183

    Article  CAS  Google Scholar 

  • van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. International Fertilizer Development Center (IFDC). Muscle Shoals, Alabama 35662, U.S.A

    Google Scholar 

  • Vassilev N, Vassileva M, Fenice M, Federici F (2001) Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresour Technol 79:263–271

    Article  PubMed  CAS  Google Scholar 

  • Vassilev N, Medina A, Azcon R, Vassileva M (2006) Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant Soil 287:77–84

    Article  CAS  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. https://doi.org/10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665

    Article  CAS  Google Scholar 

  • Wilson MA, Ellis BG (1984) Influence of calcium solution activity and surface area on the solubility of selected rock phosphates. Soil Sci 138:354–359

    Article  CAS  Google Scholar 

  • Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W (2009) Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol 159:330–342

    Article  PubMed  CAS  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. https://doi.org/10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yadav BK, Tarafdar JC (2007) Ability of Emericella rugulosa to mobilize unavailable P compounds during Pearl millet [Pennisetum glaucum (L.) R. Br.] crop under arid condition. Indian J Microbiol 47:57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. https://doi.org/10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. https://doi.org/10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank three anonymous reviewers for providing substantial critical comments which helped to improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moharana, P.C., Meena, M.D., Biswas, D.R. (2018). Role of Phosphate-Solubilizing Microbes in the Enhancement of Fertilizer Value of Rock Phosphate Through Composting Technology. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8_6

Download citation

Publish with us

Policies and ethics