Skip to main content

Common Bean Genetics, Breeding, and Genomics for Adaptation to Changing to New Agri-environmental Conditions

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Pulse Crops

Abstract

Common bean (Phaseolus vulgaris L.) has become, over the last 20 years, a competitive crop in national, regional, and international markets. This situation presents a dynamic environment for producers and researchers of this crop and requires a rethinking of current strategies against research and production needs, the opportunities and challenges of the future, and adaptation to changing agri-environmental conditions. Improvement of the common bean means possessing in-depth knowledge of its genetic diversity, the genome and gene functions, to enable the analysis of pathways and networks in response to fluctuating environmental conditions. An important long-term challenge is the discovery of the gene(s) that control important production traits such as pest and disease resistance, abiotic stress tolerance, and biological fixation of nitrogen. This will need to be a cooperative worldwide effort that involves breeders, geneticists, and genomic and bioinformatics experts. Currently, new technologies built around the recently released common bean genome sequence are now being developed, and various genomic resources for common bean are available and include physical maps, bacterial artificial chromosome libraries, anchored physical and genetic maps, and expressed sequence tags. However, these approaches require precise phenotypic data. Complex interactions between the common bean crop genotype, environmental factors in combination with plant population dynamics and crop management greatly affect plant phenotypes in field experiments and are the key for the expansion of the productivity of this crop in traditional and nontraditional growing areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate T, Alene AD, Bergvinson D, Shiferaw B, Silim S et al (2012) Tropical Grain Legumes in Africa and South Asia: Knowledge and Opportunities. International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya, 112p

    Google Scholar 

  • Abdul-Wahid OA, Elbanna SM (2012) Evaluation of the insecticidal activity of Fusarium solani and Trichoderma harzianum against cockroaches. Periplaneta americana. Afr J Microbiol Res 6(5):1024–1032

    Google Scholar 

  • Abouheif E, Favé M-J, Ibarrarán-Viniegra AS, Lesoway MP, Rafiqi AM et al (2014) Advances in experimental medicine and biology. In: Landry CR, Aubin-Horth N (eds) Ecology and the evolution of genes and genomes. Springer, Dordrecht, Netherlands, pp 107–125

    Google Scholar 

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47(S3):S44–S59

    Google Scholar 

  • Acosta-Gallegos JA, Ochoa-Marquez R, Arrieta-Montiel MP (1989) Registration of Pinto Villa common bean. Crop Sci 35:1211

    Article  Google Scholar 

  • Acosta-Gallegos JA, White JW (1995) Phenological plasticity as an adaptation by common bean to rainfed environments. Crop Sci 35:199–204

    Article  Google Scholar 

  • Adam-Blondon AF, Sevignac M, Dron M, Bannerot H (1994) A genetic map of common bean to localize specific resistance genes against anthracnose. Genome 37:915–924

    Article  CAS  PubMed  Google Scholar 

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol Plant-Microbe Interact 21(5):507–517

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Reddy MP, Chikara J (2011) WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep 38(6):3883–3896

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (2002) Fitopatología, 2a edn. Limusa, Ciudad de México, México

    Google Scholar 

  • Ait-Lahsen H, Soler A, Rey M, de La Cruz J, Monte E et al. (2001) An antifungal exo-alpha-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. Appl Environ Microbiol 67(12):5833–5839

    Google Scholar 

  • Akello J, Sikora R (2012) Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol Control 61:215–221

    Article  Google Scholar 

  • Alahmadi S, Ouf A, Ibrahim A, El-Shaikh A (2012) Possible control of data palm stag beetle, Lucanus cervus (L.) (Coleoptera: Lucanidae), using gut protease inhibitors of different biocontrol agents. Egyp Soc Biol Control Pests 22(2):93-101

    Google Scholar 

  • Almekinders CJM, Louwaars NP (2002) The importance of the Farmers’ Seed Systems in a Functional National Seed Sector. J New Seeds 4(1–2):15–33. https://doi.org/10.1300/J153v04n01_02

    Article  Google Scholar 

  • Alseekh S, Alisdair RF (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94: 933–942. http://doi.wiley.com/10.1111/tpj.13950

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth- promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65(7):2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alzate-Marin AL, Menarin H, Cardoso de Arruda MC, Chagas JM, Gonçalves de Barros E et al (1999) Backcross assisted by RAPD markers for the introgression of Co-4 and Co-6 anthracnose resistant genes in common bean cultivars. Annu Rep Bean Improv Coop 42:15–16

    Google Scholar 

  • Alzate-Marin AL, Souza KA, Silva MGM, Oliveira EJ, Moreira MA et al (2007) Genetic characterization of anthracnose resistance genes Co-43 and Co-9 in common bean cultivar Tlalnepantla 64 (PI207262). Euphytica 154:1–8

    Article  CAS  Google Scholar 

  • American Phytopathological Society (2005) Compendium of bean diseases. 2nd ed., eds. Schwartz HF, Steadman JR, Hall R, Forster RL. APS Press, American Phytopathological Society, 104 pp

    Google Scholar 

  • Andrade-Sanchez P, Gore MA, Heun JT, Thorp KR, Carmo-Silva AE et al (2014) Development and evaluation of a field-based high-throughput phenotyping platform. Funct Plant Biol 41:68–79

    Article  Google Scholar 

  • Angioi SA, Rau D, Rodriguez M, Logozzo G, Desiderio F et al (2009) Nuclear and chloroplast microsatellite diversity in Phaseolus vulgaris L. from Sardinia (Italy). Mol Breed 23:413–429

    Article  CAS  Google Scholar 

  • Anwar W, Nawaz K, Haider MS, Shahid AA, Iftikhar S (2017) Biocontrol Potential of Trichoderma longibrachiatum as an entomopathogenic fungi against Bemisia tabaci. Can J Plant Pathol 39(4):559–559

    Google Scholar 

  • Ariyarathne HM, Coyne DP, Jung G, Skroch PW, Vidaver AK et al (1999) Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean. J Amer Soc Hort Sci 124:654–662

    Article  CAS  Google Scholar 

  • Asfaw A, Almekinders CJM, Blair MW, Struik PC (2012a) Participatory approach in common bean (Phaseolus vulgaris L.) breeding for drought tolerance for southern Ethiopia. Plant Breed 131(1): 125-134

    Google Scholar 

  • Asfaw A, Blair MW, Struik PC (2012b) Multienvironment quantitative trait loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress. Genes Genomes Genet 2:579–595

    CAS  Google Scholar 

  • Asfaw A, Ambachew D, Trushar S, Blair MW (2017) Trait associations in diversity panels of the two common bean (Phaseolus vulgaris L.) gene pools grown under well-watered and water stress conditions. Front Plant Sci 8: 1–15. http://journal.frontiersin.org/article/10.3389/fpls.2017.00733/full

  • Ashraf M, Athar HR, Kwon Harris PJC (2008) Some prospective strategies fo improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Assefa T, Abebe G, Fininsa C, Tesso B, Al-Tawaha ARM (2005) Participatory bean breeding with women and small holder farmers in eastern Ethiopia. World J Agri Sci 1(1):28–35

    Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Vayias BJ, Tsakiri JB, Mikeli NH et al (2008) Persistence and efficacy of Metarhizium anisopliae (Metschnikoff) Sorokin (Deuteromycotina: Hyphomycetes) and diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) on wheat and maize. Crop Protec 27:1303–1311

    Article  Google Scholar 

  • Atkins C (1987) Metabolism and translocation of fixed nitrogen in the nodulated legume. Plant and Soil. 100:157–169

    Article  CAS  Google Scholar 

  • Atkinson MM, Midland SL, Sims JJ, Keen NT (1996) Syringolide 1 triggers Ca2 influx, K efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4. Plant Physiol 112(1):297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustin E, Coyne DP, Schuster ML (1972) Inheritance of resistance in Phaseolus vulgaris to Uromyces phaseoli typica Brazilian rust race B11 and of plant habit. J Amer Soc Hort Sci 97:526–529

    Google Scholar 

  • Awale HE, Kelly JD (2001) Development of SCAR markers linked to Co-42 gene in common bean. Annu Rep Bean Improv Coop 44:119–120

    Google Scholar 

  • Ayyappan V, Kalavacharla V, Thimmapuram J, Bhide KP, Venkateswara SR et al (2015) Genome wide profiling of histone modifications (H3K9me2 and H4K12ac) and gene expression in rust (Uromyces appendiculatus) inoculated common bean (Phaseolus vulgaris L.). PLoS ONE 10(7):e0132176. http://dx.plos.org/10.1371/journal.pone.0132176

  • Azevedo RF, Gonçalves-Vidigal MC, Oblessuc PR, Melotto M (2018) The common bean COK-4 and the Arabidopsis FER kinase domain share similar functions in plant growth and defense. Mol Plant Pathol 9:1–14

    Google Scholar 

  • Bai Y, Michaels TE, Pauls KP (1997) Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome 40:544–551

    Article  CAS  PubMed  Google Scholar 

  • Baier AH, Webster BD (1992) Control of Acanthoscelides obtectus Say (Coleoptera: Bruchidae) in Phaseolus vulgaris L. seed stored on small farms. Evaluation of damage. J Stored Prod Res 28:289–293

    Article  CAS  Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors. Plant Signal Behav 9(2):e27700

    Article  CAS  PubMed  Google Scholar 

  • Balcha A, Tigabu R (2015) Participatory varietal selection of common bean (Phaseolus vulgaris L.) in Wolaita, Ethiopia’. Asian J Crop Sci 7(4):295–300

    Google Scholar 

  • Ballantyne BJ (1978) The genetic bases of resistance to rust, caused by Uromyces appendiculatus in bean (Phaseolus vulgaris L.). PhD Thesis. Sydney. University of Sydney, Australia

    Google Scholar 

  • Baltes NJ, Gil-Humanes J, Voytas DF (2017) Genome engineering and agriculture: Opportunities and challenges. In: Weeks DP, Yang B (eds). Increasing Resistance to Abiotic Stress Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  • Barra P, Rosso L, Nesci A, Etcheverry M (2013) Isolation and identification of entomopathogenic fungi and their evaluation against Tribolium confusum, Sitophilus zeamais, and Rhyzopertha dominica in stored maize. J Pest Sci 86:217–226

    Article  Google Scholar 

  • Barthelson RA, Qaisar U, Galbraith DW (2010) Functional analysis of the Gossypium arboreum genome. Plant Mol Biol Report 28(2):334–343

    Article  CAS  Google Scholar 

  • Barton L, Thamo T, Engelbrecht D, Biswas WK (2014) Does growing grain legumes or applying lime cost effectively lower greenhouse gas emissions from wheat production in a semi-arid climate? J Cleaner Prod 83:194–203

    Article  Google Scholar 

  • Batta YA (2004) Control of rice weevil (Sitophilus oryzae L., Coleoptera: Curculionidae) with various formulations of Metarhizium anisopliae. Crop Protec 23:103–108

    Article  Google Scholar 

  • Beaver JS, Estévez de Jensen C, Lorenzo-Vázquez G, González A, Martínez H et al (2018) Registration of ‘Bella’ white-seeded common bean cultivar. J Plant Reg 12:190–193

    Article  Google Scholar 

  • Beaver JS, Zapata M, Alameda M, Porch TG, Rosas JC (2012) Registration of PR0401-259 and PR0650-31 Dry Bean Germplasm Lines. J Plant Reg 6:81–84

    Article  Google Scholar 

  • Beaver JS, Porch TG, Zapata M (2008) Registration of ‘Verano’ white bean. J Plant Reg 2:187–189

    Article  Google Scholar 

  • Beebe S, Rao I, Terán H, Cajiao C (2007) Breeding concepts and approaches in food legumes: The example of common bean. In: Food and Forage Legumes of Ethiopia: Progress and Prospects. Proceedings of the Workshop on Food and Forage Legumes. Addis Abeba, Ethiopia, pp 23–29

    Google Scholar 

  • Beebe S, Toro O, González AV, Chacón MI, Debouck D (1997) Wildweed-crop complex of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding. Genet Resour Crop Evol 44:73–91

    Article  Google Scholar 

  • Beebe SE (2012) Common bean breeding in the tropics. Plant Breed Rev 36:357–426

    Article  Google Scholar 

  • Beebe SE, Corrales MP (1991) Breeding for disease resistance. In: Schoonhoven O, van Voysest A (eds) Common beans: research for crop improvement. CAB International, Wallingford, United Kingdom, pp 561–617

    Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:1–20

    Article  CAS  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Butare L (2009) Breeding for abiotic stress tolerance in common bean: Present and future challenges. SABRAO J Breed Genet 41:1–11

    Google Scholar 

  • Beebe SE, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Article  Google Scholar 

  • Beebe SE, Rao IM, Mukankusi C, Buruchara R (2012) Improving resource use efficiency and reducing risk of common bean production in Africa, Latin America, and the Caribbean. In: Hershey CH (ed) Eco-efficiency: From Vision to Reality. CIAT, Cali, Colombia, pp 117–134

    Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    PubMed  Google Scholar 

  • Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Breeding upland rice for drought resistance. J Sci Food Agri 88:927–939

    Article  CAS  Google Scholar 

  • Bhatia CR, Nichterlein K, Maluszynski M (2001) Mutants affecting nodulation in grain legumes and their potential in sustainable cropping systems. Euphytica 120:415–432

    Article  Google Scholar 

  • Bhawna VSB, Prasad Gajula MNV (2016) PvTFDB: a Phaseolus vulgaris transcription factors database for expediting functional genomics in legumes. Database: JBiolDatabasesCuration:1–6. https://doi.org/10.1093/database/baw114

  • Binagwa PH, Conrad BK, Msolla SN (2016) Evaluation of common bean (Phaseolus vulgaris) genotypes for resistance to root rot disease caused by Pythium aphanidermatum and Pythium splendens under screen house conditions. J Nat Sci Res 6(6):36–43

    Google Scholar 

  • Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159(1):266–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitocchi E, Bellucci E, Giardini G, Rau R, Rodriguez M et al (2013) Molecular analysis of the parallel domestication of the common bean in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  CAS  PubMed  Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci USA 109:E788–E796

    Article  PubMed  PubMed Central  Google Scholar 

  • Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia et al (2017) Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Front Plant Sci 8:722. https://doi.org/10.3389/fpls.2017.00722

  • Blair MW, Cortes AJ, Penmetsa RV, Farmer A, Carrasquilla-Garcia N et al (2013) A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.). Theor Appl Genet 126:535–548

    Article  PubMed  Google Scholar 

  • Blair MW, Galeano CH, Tovar E, Torres M, Velasco A et al (2012) Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Mol Breed 29:71–88

    Article  PubMed  Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC et al (2006a) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006b) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031

    Article  PubMed  Google Scholar 

  • Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE et al (2010) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE et al (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.) Theor Appl Genet 107:1362–74

    Google Scholar 

  • Blair MW, Torres MM, Giraldo MC, Pedraza F (2009) Development and diversity of Andean derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biol 9:1–14

    Article  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust J Agri Res 56:1159–1168

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Article  Google Scholar 

  • Bobe G, Barrett KG, Mentor-Marcel RA, Saffiotti U, Young MR et al (2008) Dietary cooked navy beans and their fractions attenuate colon carcinogenesis in azoxymethane-induced ob/ob mice. Nutr Cancer 60:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60(1):379–406

    Article  CAS  PubMed  Google Scholar 

  • Borges A, Melotto M, Tsai SM, Caldas DGG (2012) Changes in spatial and temporal gene expression during incompatible interaction between common bean and Anthracnose pathogen. J Plant Physiol 169(12):1216–1220

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosys. Environ 100(1):3–16

    Article  Google Scholar 

  • Briñez B, Morini Küpper Cardoso Perseguini J, Santa Rosa J, Bassi D, Ribeiro Gonçalves JG et al (2017) Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers. Genet Mol Biol 40:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P et al (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254(5035):1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147(1):779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P et al (2003) Beans (Phaseolus spp.) - model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Brücher OB, Brücher H (1976) The South American wild bean (Phaseolus aborigineus ‘Burk’.), as ancestor of the common bean. Econ Bot 30:257–272

    Article  Google Scholar 

  • Brunner K, Peterbauer CK, Mach RL, Lorito M, Zeilinger S et al (2003) The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43(4):289–295

    Article  CAS  PubMed  Google Scholar 

  • Butare L, Rao IM, Lepoivre P, Polania J, Cajiao C et al (2011) New genetic sources of resistance in the genus Phaseolus to individual and combined aluminium toxicity and progressive soil drying stresses. Euphytica 181:385–404

    Article  CAS  Google Scholar 

  • Campa A, Giraldez R, Ferreira JJ (2011) Genetic analysis of the resistance to eight anthracnose races in the common bean differential cultivar Kaboon. Phytopathology 101:757–764

    Article  PubMed  Google Scholar 

  • Campa A, Rodriguez-Suarez C, Giraldez R, Ferreira JJ (2014) Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.). BMC Plant Biol 14:115. PMID: 24779442. https://doi.org/10.1186/1471-2229-14-115

  • Campelo MP (2010) Estudio de la microbiotica patógena presente en semillas de “Alubia de León” (Phaseolus vulgaris L.) y los métodos de control. PhD Thesis, Univ de León, León, Spain

    Google Scholar 

  • Cardoza RE, Vizcaíno JA, Hermosa MR, Sousa S, González FJ et al (2005) Cloning and characterization of the erg1 gene of Trichoderma harzianum: Effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genet Biol 43(3):164–178

    Article  CAS  Google Scholar 

  • Carrasco-Castilla J, Ortega-Ortega Y, Jáuregui-Zúñiga D, Juárez-Verdayes MA, Arthikala M-K et al (2018) Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environ Exp Bot 153:108–119. https://doi.org/10.1016/j.envexpbot.2018.05.016

    Article  CAS  Google Scholar 

  • Carvalho GA, Paula Junior TJ, Alzate-Marin AL, Nietsche S, Barros EG et al (1998) Herença da resistência da linhagem AND-277 de Feijoeiro-comun à raca 63-23 de Phaeoisariopsis griseola e identificaçao de marcador RAPD ligado ao gene de resistencia. Fitopatol Bras 23:482–485

    CAS  Google Scholar 

  • Casquero PA, Lema M, Santalla M, De Ron AM (2006) Performance of common bean landraces from Spain in the Atlantic and Mediterranean environments. Genet Resour Crop Evol 53:1021–1032

    Article  Google Scholar 

  • Castellanos JZ, Pena-Cabriales JJ, Acosta-Gallegos JA (1996) 15N-determined dinitrogen fixation capacity of common bean (Phaseolus vulgaris) cultivars under water stress. J Agri Sci 126:327–333

    Article  Google Scholar 

  • Ceccarelli S, Grando S (2007) Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155:349–360

    Article  Google Scholar 

  • Chacón MI, Pickersgill S, Debouck D (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Article  CAS  Google Scholar 

  • Chaman ME, Copaja SV, Argandoña VH (2003) Relationships between salicylic acid content, Phenylalanine Ammonia-Lyase (PAL) activity, and resistance of barley to aphid infestation. J Agric Food Chem 51(8):2227–2231

    Article  CAS  PubMed  Google Scholar 

  • Champ MM (2002) Non-nutrient bioactive substances of pulses. Br J Nutr 88:S307–S319

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis 70(2):145–148

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP et al (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    CAS  PubMed  Google Scholar 

  • Chen H, Lai Z, Shi J, Xiao Y, Chen Z et al (2010) Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10(1):281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Wu J, Wang L, Mantri N, Zhang X et al (2017) Mapping and genetic structure analysis of the anthracnose resistance locus Co-1HY in the common bean (Phaseolus vulgaris L.). PLoS One 12:1–18

    Google Scholar 

  • Chen X, Qi X, Duan LX (2015) Overview. In: Qi X, Chen X, Wang Y (eds) Plant Metabolomics. Springer, Dordrecht, Netherlands, pp 1–24

    Google Scholar 

  • Cherry AJ, Abalo P, Hell K (2005) A laboratory assessment of the potential of different strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) to control Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in stored cowpea. J Stored Prod Res 41:295–309

    Article  Google Scholar 

  • Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: Its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Chiarolla C, Louafi S, Schloen M (2012) An analysis of the relationship between the Nagoya protocol and instruments related to genetic resources for food and agriculture and farmers’ rights. In: Buck M, Morgera E, Tsoumani E (eds) The 2010 Nagoya protocol on access and benefit-sharing: Implications for international law and implementation challenges. Brill Academic Publisher, Leiden, Boston, USA

    Google Scholar 

  • Chilagane L, Nchimbi-Msolla S, Kusolwa P, Porch T et al (2016) Characterization of the common bean host and Pseudocercospora griseola, the causative agent of angular leaf spot disease in Tanzania. Afric. J. Plant Sci. 10:238–245. https://doi.org/10.5897/AJPS2016.1427

    Article  CAS  Google Scholar 

  • Chowdhury MA, Yu K, Park SJ (2002) Molecular mapping of root rot resistance in common bean. Annu Rep Bean Improv Coop 45:96–97

    Google Scholar 

  • Cichy KA, Porch TG, Beaver JS, Cregan P, Fourie D et al (2015a) A Phaseolus vulgaris diversity panel for Andean bean improvement. Crop Sci 55(5):2149–2160

    Article  CAS  Google Scholar 

  • Cichy KA, Wiesinger JA, Mendoza FA (2015b) Genetic diversity and genomewide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theor Appl Genet 128:1555–1567. https://doi.org/10.1007/s00122-015-2531-z

    Article  PubMed  Google Scholar 

  • Clarke HJ, Khan TN, Siddique KHM (2004) Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica 139:65–74

    Article  Google Scholar 

  • Cleary A, Farmer A (2018) Genome context viewer: visual exploration of multiple annotated genomes using microsynteny. Bioinformatics 34(9):1562–1564

    Article  CAS  PubMed  Google Scholar 

  • Coimbra-Gonçalves GK, Gonçalves-Vidigal MC, Coelho RT, Valentini G, Vidigal Filho PS et al (2016) Characterization and mapping of anthracnose resistance genes in mesoamerican common bean cultivar Crioulo 159. Crop Sci 56:2904–2915

    Article  CAS  Google Scholar 

  • Colás Sánchez A, Torres Gutiérrez R, Cupull Santana R, Rodríguez Urrutia A, Fauvart M et al (2014) Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur J Soil Biol 62:105–112. https://doi.org/10.1016/j.ejsobi.2014.03.004

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in 21st century. Phil Trans Roy Soc Lond Biol Sci 363:557–572

    Article  CAS  Google Scholar 

  • Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS et al (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: Effects of culture medium and growth stage. Plant Physiol Biochem 48(5):310–318

    Article  CAS  PubMed  Google Scholar 

  • Cooper B, Campbell KB (2017) Protection against common bean rust conferred by a gene silencing method. Phytopathology 107(8):920–927. http://apsjournals.apsnet.org/doi/10.1094/ PHYTO-03-17-0095-R

  • Corrêa RX, Good-God PIV, Oliveira MLP, Nietsche S, Moreira MA et al (2001) Herança da resistência à mancha-angular do feijoeiro e identificação de marcadores moleculares flanqueando o loco de resistência. Fitopatol Bras 26:27–32

    Article  Google Scholar 

  • Crampton M, Sripathi VR, HossainK, KalavacharlaV (2016) Analyses ofmethylomes derived from Meso-American common bean (Phaseolus vulgaris L.) using MeDIP-Seq and whole genome sodium bisulfitesequencing. Front Plant Sci 7: 447

    Google Scholar 

  • Cuellar-Ortiz SM, de la Paz Arrieta-Montiel M, Acosta-Gallego JA, Covarrubias AA (2008) Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ 31:1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin A: A novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53(10):2605–2611

    CAS  Google Scholar 

  • Cutler HG, Jacyno JM (1991) Biological activity of (-)-Harzianopyridone isolated from Trichoderma harzianum. Agric Biol Chem 55(10):2629–2631

    CAS  Google Scholar 

  • Da Silva PH (2017) Control biológico del gorgojo de la judía Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae) en la región de Castilla y Léon-España. PhD Thesis, University of León, León, Spain

    Google Scholar 

  • Daglish GJ (2008) Impact of resistance on the efficacy of binary combinations of spinosad, chlorpyrifos-methyl and s-methoprene against five stored-grain beetles. J Stored Prod Res 44:71–76

    Article  CAS  Google Scholar 

  • Daglish GJ, Hall EA, Zorzetto MJ, Lambkin TM, Erbacher JM (1993) Evaluation of protectants for control of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae) in navy beans (Phaseolus vulgaris (L.)). J Stored Prod Res 29:215–219

    Article  CAS  Google Scholar 

  • Dal Bello G, Padín S, Juárez P, Pedrini N, De Giusto M (2006) Biocontrol of Acanthoscelides obtectus and Sitophilus oryzae with diatomaceous earth and Beauveria bassiana on stored grains. Biocontrol Sci Technol 16:215–220

    Article  Google Scholar 

  • Dana M de las M, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2015) Global synthesis of drought effects on food legume production. PLoS ONE 10(6):e0127401. https://doi.org/10.1371/journal.pone.0127401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ddamulira G, Mukankusi C, Ochwo-Ssemakula M, Edema R, Sseruwagi P et al (2014) Distribution and variability of Pseudocercospora griseola in Uganda. J Agric Sci 6(6):16–29. http://www.ccsenet.org/journal/index.php/jas/article/view/33535

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • De Ron AM, González AM, Rodiño AP, Santalla M, Godoy L et al (2016) History of the common bean crop: its evolution beyond its areas of origin and domestication. Arbor 192(779):a317

    Article  Google Scholar 

  • De Ron AM, Papa R, Bitocchi E, González AM, Debouck et al (2015) Common bean. In: De Ron AM (ed) Grain Legumes, Series: Handbook of Plant Breeding. Springer Science+Business Media, New York, USA, pp 1-36

    Google Scholar 

  • Debouck DG, Araya Villalobos R, Ocampo Sánchez RA, González UWG (1989) Collecting Phaseolus in Costa Rica. Plant Genet Resour Newsl 78:44–46

    Google Scholar 

  • Debouck DG, Smartt J (1995) Beans. In: Smartt J, Simmonds NW (eds) Evolution of Crop Plants. Longman Scientific & Technical, London, United Kingdom, pp 287–296

    Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Article  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3):3004.1-3004.10

    Google Scholar 

  • Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 838(8):838–853

    Article  CAS  Google Scholar 

  • DOE-JGI (2018) Panicum Virgatum v2.1. http://phytozome.jgi.doe.gov/

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant-Microbe Interact 17(6):654–667

    Google Scholar 

  • Drijfhout E (1978) Genetic interaction between Phaseolus vulgaris and bean common mosaic virus with implications for strain identification and breeding for resistance. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands

    Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM et al (2011) Trichoderma: The genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759

    Article  CAS  PubMed  Google Scholar 

  • Duncan RW, Gilbertson RL, Singh SP (2012) Direct and marker-assisted selection for resistance to common bacterial blight in common bean. Crop Sci 52:1511

    Article  Google Scholar 

  • Durán L, Blair MW, Giraldo MC, Macchiavelli R, Prophete E et al (2005) Morphological and molecular characterization of common bean landraces and cultivars from the Caribbean. Crop Sci 45:1320–1328

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Easlon HM, Nemali KS, Richards JH, Hanson DT, Juenger TE et al (2014) The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana. Photosynth Res 119:119–129

    Article  CAS  PubMed  Google Scholar 

  • Elias JCF (2018) Association Analysis for Characteristics Related to Drought Tolerance in Common Bean (Phaseolus vulgaris L.). Doctoral Thesis. Universidade Estadual de Maringá: Programa de Pós-Graduação em Agronomia. Brazil. 105 pp

    Google Scholar 

  • Ender M, Kelly JD (2005) Identification of QTL associated with white mold resistance in common bean. Crop Sci 45:2482–2490

    Article  CAS  Google Scholar 

  • Engelberth J, Koch T, Kühnemann F, Boland W (2000) Channel-forming peptaibols are potent elicitors of plant secondary metabolism and tendril coiling. Angew Chemie Int Ed 39(10):1860–1862

    Article  CAS  Google Scholar 

  • Ernest EG, Wisser RJ, Johnson GC (2017) Physiological effects of heat stress on lima bean (Phaseolus lunatus) and development of heat tolerant screening techniques. Annu Rep Bean Improv Coop 60:101–102

    Google Scholar 

  • Eromosele O, Bo S, Ping L (2013) Induction of phytochemical glyceollins accumulation in soybean following treatment with biotic elicitor (Aspergillus oryzae). J Funct Foods 5(3):1039–1048

    Article  CAS  Google Scholar 

  • Esquinas-Alcázar JT, Hilm A, López Noriega I (2012) A brief history of the negotiations on the International Treaty on Plant Genetic Resources for Food and Agriculture. Crop genetic resources as a global commons. Routledge, London, United Kingdom, pp 147–161

    Google Scholar 

  • Farid M, Earl HJ, Pauls K, Navabi A (2017) Response to selection for improved nitrogen fixation in common bean (Phaseolus vulgaris L.). Euphytica 213(99):1–13. http://dx.doi.org/10.1007/ s10681-017-1885-5

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Fazio G, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  CAS  PubMed  Google Scholar 

  • Federici CT, Ehdaie B, Waines JC (1990) Domesticated and wild tepary bean: field performance with and without drought-stress. Agron J 82:896–900

    Article  Google Scholar 

  • Felicetti E, Song Q, Jia G, Cregan P, Bett KE et al (2012) Simple sequence repeats linked with slow darkening trait in pinto bean discovered by single nucleotide polymorphism assay and whole genome sequencing. Crop Sci 52:1600–1608

    Article  CAS  Google Scholar 

  • Feng S, Saw CL, Lee YK, Huang D (2007) Fungal-stressed germination of black soybeans leads to generation of oxooctadecadienoic acids in addition to glyceollins. J Agric Food Chem 55(21):8589–8595

    Article  CAS  PubMed  Google Scholar 

  • Fernández GCJ (1992) Effective selection criteria for assessing stress tolerance. In: Kuo CG (ed) Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress, Tainan, Taiwan

    Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24(7):1187–93

    Google Scholar 

  • Finke ML, Coyne DP, Steadman JR (1986) The inheritance and association of resistance to rust, common bacterial blight, plant habit and foliar abnormalities in Phaseolus vulgaris L. Euphytica 35:969–982

    Article  Google Scholar 

  • Foster EF, Pajarito A, Acosta-Gallegos JA (1995) Moisture stress impact on N partitioning, N remobilization and N-use efficiency in beans (Phaseolus vulgaris L.). J Agri Sci 124:27–37

    Article  Google Scholar 

  • Fouilloux G (1979) New races of bean anthracnose and consequences in our breeding programs. In: Maraite H, Meyer JA (eds) International symposiumof diseases of tropical food crops. Universite Catolique de Louvain-La Neuve, Belgium, pp 221–235

    Google Scholar 

  • Fourie D, Miklas P, Ariyarathne HM (2004) Genes conditioning halo blight resistance to races 1, 7 and 9 occur in a tight cluster. Annu Rep Bean Improv Coop 47:103–104

    Google Scholar 

  • Foyer CH, Lam H-M, Nguyen HT, Siddique KHM, Varshnevy RK et al (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112

    Article  PubMed  Google Scholar 

  • Frahm MA, Rosas JC, Mayek-Perez N, Lopez-Salinas E, Acosta-Gallegos JA et al (2004) Breeding beans for resistance to terminal drought in the lowland tropics. Euphytica 136:223–232

    Article  Google Scholar 

  • Freyre R, Skroch PW, Geffroy V, Adam-Blondon AF, Shirmohamadali A et al (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Galeano CH, Cortés AJ, Fernández AC, Soler A, Franco-Herrera N et al (2012) Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genetics 13:48. https://doi.org/10.1186/1471-2156-13-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galeano CH, Fernandez AC, Franco-Herrera N, Cichy KA, McClean PE et al (2011) Saturation of an intra-gene pool linkage map: Towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS One 6:e28135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galeano CH, Fernández AC, Gómez M, Blair MW (2009) Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genomics 10:629

    Google Scholar 

  • Galindo-González L, Mhiri C, Deyholos MC, Grandbastien MA (2017) LTR-Retrotransposons in plants: engines of evolution. Gene 626:14–25

    Article  CAS  PubMed  Google Scholar 

  • Gallo D, Neto SS, Carvalho RPL, Baptista GC, Filho EB et al (2002) Entomologia Agrícola. Fundação de Estudos Agrários Luiz de Queiróz, Piracicaba, Brazil

    Google Scholar 

  • Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J. Plant Pathol 124(2):219–230

    Article  Google Scholar 

  • Gallou A, Declerck S, Cranenbrouck S (2012) Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization. Funct Integr Genomics 12(1):183–198

    Article  CAS  PubMed  Google Scholar 

  • Ganassi S, Grazioso P, De Cristofaro A, Fiorentini F, Sabatini MA et al (2016) Long chain alcohols produced by Trichoderma citrinoviride have phagodeterrent activity against the bird cherry-oat aphid Rhopalosiphum padi. Front Microbiol 7:29

    Article  Google Scholar 

  • Gao D, Abernathy B, Rohksar D, Schmutz J, Jackson SA (2014) Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris). Front Plant Sci 5: 1–9. http:// journal.frontiersin.org/article/10.3389/fpls.2014.00339/abstract

    Google Scholar 

  • Gao D, Zhao D, Abernathy B, Iwata-Otsubo A, Herrera-Estrella A et al (2016) Dynamics of a novel highly repetitive CACTA family in common bean (Phaseolus vulgaris). Genes Genomes Genet 6: 2091–2101. http://g3journal.org/lookup/doi/10.1534/g3.116.028761

  • Garzon LN, Blair MW (2014) Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean. Crop J. 2:183–194

    Article  Google Scholar 

  • Garzón LN, Ligarretoa GA, Blair MW (2007) Molecular marker-assisted backcrossing of anthracnose resistance into andean climbing beans (Phaseolus vulgaris L.). Crop Sci 48:562–570

    Article  CAS  Google Scholar 

  • Geffroy V (1997) Dissection Génétique de La Résistance à Colletotrichum Lindemuthianum, Agente de L’ Anthracnose, Chez Deux Génotypes Représentatifs des Pools Géniques de Phaseolus vulgaris. Thèse de Doctorat. Paris-Grignon: Institut National Agronomique Paris Grignon, France, 263 pp

    Google Scholar 

  • Geffroy V, Macadre C, David P, Pedrosa-Harand A, Sévignac M et al (2009) Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics 181:405–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geffroy V, Sévignac M, Billant P, Dron M, Langin T (2008) Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: A case study for mapping two independent genes. Theor Appl Genet 116:407–415

    Article  CAS  PubMed  Google Scholar 

  • Geffroy V, Sevignac M, De Oliveira JCF, Fouilloux G, Skroch P et al (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant Microbe Interact 13:287–296

    Article  CAS  PubMed  Google Scholar 

  • Geffroy V, Sicard D, de Oliveira JCF, Sévignac M, Séverine C et al (1999) Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant Microbe Interact 12(9): 774–784. http://apsjournals.apsnet.org/doi/10.1094/MPMI.1999.12.9.774

  • Gepts P (1988) Phaseolin as an evolutionary marker. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, Dordrecht, The Netherlands, pp 215–241

    Chapter  Google Scholar 

  • Gepts P (1999) Development of an integrated linkage map. In: Singh SP (ed) Common Bean Improvement in the Twenty-First Century. Developments in Plant Breeding, Springer, Dordrecht, The Hetherlands, pp 53–91

    Chapter  Google Scholar 

  • Gepts P, Aragão FJ, De Barros E, Blair MW, Brondani R et al (2008) Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 113–143

    Chapter  Google Scholar 

  • Ghosh SK, Pal S (2016) Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malation against the insect pest Leucinodes orbonalis. Environ Monitor Assess 188:37–44

    Article  CAS  Google Scholar 

  • Gilio TAS, Hurtado-Gonzales OP, Valentini G, Castro SAL, Elias HT et al (2017) Fine mapping the broad spectrum anthracnose resistance gene in Amendoim Cavalo. Annu Rep Bean Improv Coop 60:3–4

    Google Scholar 

  • Gołebiowski M, Malinski E, Nawrot J, Stepnowski P (2008) Identification and characterization of surface lipid components of the dried-bean beetle Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J Stored Prod Res 44:386–388

    Article  CAS  Google Scholar 

  • Gonçalves-Vidigal MC (1994) Herança da Resistência às Raças Alfa, Delta e Capa de Colletotrichum lindemuthianum (Sacc. et Magn.) Scrib. no Feijoeiro (Phaseolus vulgaris L.), Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil

    Google Scholar 

  • Gonçalves-Vidigal MC, Cruz AS, Garcia A, Kami J, Vidigal Filho PS et al (2011) Linkage mapping of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet 122:893–903

    Article  PubMed  Google Scholar 

  • Gonçalves-Vidigal MC, Cruz AS, Lacanallo GF, Vidigal Filho PS, Sousa LL et al (2013) Co-segregation analysis and mapping of the anthracnose Co-10 and angular leaf spot Phg-ON disease-resistance genes in the common bean cultivar Ouro Negro. Theor Appl Genet 126:2245–2255

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves-Vidigal MC, Kelly JD (2006) Inheritance of anthracnose resistance in the common bean cultivar Widusa. Euphytica 151:411–419

    Article  CAS  Google Scholar 

  • Gonçalves-Vidigal MC, Lacanallo GF, Vidigal Filho PS (2008) A new Andean gene conferring resistance to anthracnose in common bean (Phaseolus vulgaris L.) cultivar Jalo Vermelho. Plant Breed 127:592–596

    Article  Google Scholar 

  • Gonçalves-Vidigal MC, Meirelles AC, Poletine JP, Sousa LL, Cruz AS et al (2012) Genetic analysis of anthracnose resistance in Pitanga dry bean cultivar. Plant Breed 131:423–429

    Article  CAS  Google Scholar 

  • Gonçalves-Vidigal MC, Pacheco CMNA, Vidigal Filho PS, Lacanallo GF, Sousa LL et al (2016) Genetic mapping of the anthracnose resistance gene Co-14 in the common bean cultivar Pitanga. Annu Rept Bean Improv Coop 59:85–86

    Google Scholar 

  • Gonçalves-Vidigal MC, Silva C, Vidigal Filho PS, Gonela A, Kvitschal MV (2007) Allelic relationships of anthracnose (Colletotrichum lindemuthianum) resistance in the common bean (Phaseolus vulgaris L.) cultivar Michelite and the proposal of a new anthracnose resistance gene, Co-11. Genet Mol Biol 30:589–593

    Article  Google Scholar 

  • Gonçalves-Vidigal MC, Vidigal Filho PS, Medeiros AF, Pastor-Corrales MA (2009) Common bean landrace Jalo Listras Pretas is the source of a new andean anthracnose resistance gene. Crop Sci 49:133–138

    Article  CAS  Google Scholar 

  • González AM, Godoy L, Santalla M (2017) Dissection of resistance genes to Pseudomonas syringae pv. phaseolicola in UI3 common bean cultivar. Int J Mol Sci 18:2503

    Google Scholar 

  • González AM, Rodiño AP, Santalla M, De Ron AM (2009) Genetics of intra-gene pool and inter-gene pool hybridization for seed traits in common bean (Phaseolus vulgaris L.) germplasm from Europe. Field Crops Res 112:66–76

    Article  Google Scholar 

  • González AM, Yuste-Lisbona FJ, Godoy L, Fernández-Lozano A, Rodiño P et al (2016) Exploring the quantitative resistance to Pseudomonas syringae pv. phaseolicola in common bean (Phaseolus vulgaris L.). Mol Breed 36: 166 https://doi.org/10.1007/s11032-016-0589-1

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD et al (2012) Phytozome: a comparative platform for green plant genomics. Nucl Acids Res 40(D1):1178–1186

    Article  CAS  Google Scholar 

  • Goretti D, Bitocchi E, Bellucci E, Rodríguez M, Rau D et al (2014) Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. Mol Breed 33:531–544

    Article  CAS  Google Scholar 

  • Gowda CLL, Parthasarathy Rao P, Bhagavatula S (2009) Global trends in production and trade of major grain legumes. International Conference on Grain Legumes: Quality Improvement, Value Addition and Trade; Indian Society of Pulses Research and Development and Indian Institute of Pulses Research, Kanpur, India, pp 282–301

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiol 131(3):872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol Biochem 39(8):1968–1977

    Article  CAS  Google Scholar 

  • Gray SB, Strellner RS, Puthuval KK, Christopher N, Shulman RE et al (2013) Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress. Funct Plant Biol 40:137–147

    Article  PubMed  Google Scholar 

  • Grayer RJ, Kokubun T (2001) Plant–fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56(3):253–263

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E (2005) Plant metabolic diversity: a regulatory perspective. Trends Plant Sci 10(2):57–62

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-González ML, Rodríguez-Kessler M, Rodríguez-Guerra R, González-Chavira M, Simpson J et al (2011) Differential expression of Phaseolus vulgaris genes induced during the interaction with Rhizoctonia solani. Plant Cell Rep. 30(8):1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson L-A, Debouck DG et al (2016) Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 17:1–16. https://doi.org/10.1186/s12864-016-2499-3

    Article  CAS  Google Scholar 

  • Hajek A (2004) Natural Enemies: An Introduction to Biological Control. Cambridge University Press, Cambridge, United Kingdom

    Book  Google Scholar 

  • Halewood M (2014) International efforts to pool and conserve crop genetic resources in times of radical legal change. Intellectual property rights: legal and economic challenges for development, Oxford University Press, United Kingdom, pp 288-322

    Google Scholar 

  • Haley SD, Afanador LK, Miklas PM, Stavely JR, Kelly JD (1994) Heterogeneous inbred populations are useful as sources of near-isogenic lines for RAPD marker localization. Theor Appl Genet 88:337–342

    Article  CAS  PubMed  Google Scholar 

  • Hanai LR, Santini L, Camargo LEA, Fungaro MHP, Gepts P et al (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45

    Article  CAS  PubMed  Google Scholar 

  • Hangen L, Bennik MR (2003) Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44:60–65

    Google Scholar 

  • Hannah MA, Krämer KM, Geffroy V, Kopka J, Blair MW et al (2007) Hybrid weakness controlled by the dosage-dependent lethal (DL) gene system in common bean (Phaseolus vulgaris) is caused by a shoot-derived inhibitory signal leading to salicylic acid-associated root death. New Phytol 176:537–549

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev 2(1):43–56

    CAS  Google Scholar 

  • Harman GE, Kubicek CP (1998) Trichoderma and Gliocladium. Volume 1: Enzymes, biological control and commercial applications. CRC Press, London, United Kingdom, p 393

    Google Scholar 

  • Harman GE, Kubicek CP (2002) Trichoderma and Gliocladium. Volume 2: Basic biology, taxonomy and genetics. CRC Press London, United Kingdom, p 300

    Google Scholar 

  • Hart JP, Griffiths PD (2013) A series of eIF4E alleles at the Bc-3 locus are associated with recessive resistance to Clover yellow vein virus in common bean. Theor Appl Genet 126:2849–2863

    Article  CAS  PubMed  Google Scholar 

  • Hatem I, Tan J (2003) Image analysis. In: Heldman DR (ed) Encyclopedia of agriculture, food, and biological engineering. Marcel Dekker, NewYork, USA, pp 517–523

    Google Scholar 

  • Héraux FM, Hallett SG, Ragothama KG, Weller SC (2005) Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. HortScience 40(5):1394–1397

    Article  Google Scholar 

  • Hermosa MR, Grondona I, Díaz-Mínguez JM, Iturriaga EA, Monte E (2001) Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Curr Genet 38(6):343–350

    Article  CAS  PubMed  Google Scholar 

  • Hermosa MR, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Belén Rubio M, Cardoza RE, Nicolás C, Monte E et al (2013) The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 16(2):69–80

    CAS  PubMed  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hinkossa A, Gebeyehu S, Zeleke H (2013) Generation mean analysis and heritability of drought resistance in common bean (Phaseolus vulgaris L.). Afric J Agri Res 8:1319–1329

    Article  Google Scholar 

  • Ho MD, Rosas JD, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1995) Mechanisms in the biocontrol of Rhizoctonia solani-induced cotton seedling disease by Gliocladium virens: antibiosis. Phytopathology 85:469–472

    Article  Google Scholar 

  • Hoyos-Villegas V, Song Q, Kelly JD (2017) Genome-wide association analysis for drought tolerance and associated traits in common bean. Plant Genome 10:1–17

    Article  Google Scholar 

  • Hoyos-Villegas VW, Mkwaila PB, Cregan P, Kelly JD (2015) QTL Analysis of white mold avoidance in pinto bean (Phaseolus vulgaris). Crop Sci 55:2116–2129

    Article  CAS  Google Scholar 

  • Huang FC, Studart Witkowski C, Schwab W (2010) Overexpression of hydroperoxide lyase gene in Nicotiana benthamiana using a viral vector system. Plant Biotechnol J 8(7):783–795

    Article  CAS  PubMed  Google Scholar 

  • Humphreys MO, Humphreys MW (2005) Breeding for stress resistance: general principles. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth, New York, USA, pp 19–46

    Google Scholar 

  • Hungria M, Kaschuk G (2014) Regulation of N2 fixation and NO3−/NH4+ assimilation in nodulated and N-fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environ Exp Bot 98:32–39

    Article  CAS  Google Scholar 

  • Hurtado-Gonzales OP, Valentini G, Gilio TAS, Martins AM, Song Q, Pastor-Corrales MA (2017a) Fine Mapping of Ur-3, a historically important rust resistance locus in common bean. Genes Genomes Genet 7:557–569

    CAS  Google Scholar 

  • Hurtado-Gonzales OP, Valentini G, Gilio TAS, Quigley C, Song Q, Gonçalves-Vidigal MC, Pastor-Corrales MA (2017b) Fine mapping of genes conferring resistance to rust and anthracnose of common bean. Annu Rep Bean Improv Coop 61:27–28

    Google Scholar 

  • Hwang C, Correll MJ, Gezan SA, Zhang L, Bhakta MS et al (2017) Next generation crop models: A modular approach to model early vegetative and reproductive development of the common bean (Phaseolus vulgaris L). Agri Syst 155:225–239

    Article  CAS  Google Scholar 

  • Hyten DL, Smithb JR, Frederickc RD, Tuckera ML, Song Q et al (2009) Bulked segregant analysis using the goldengate assay to locate the Rpp3 locus that confers resistance to soybean rust in soybean. Crop Sci 49:265–271

    Article  CAS  Google Scholar 

  • Hyten DL, Song Q, Fickus EW, Quigley CV, Lim JS et al (2010) High through-put SNP discovery and assay development in common bean. BMC Genom 11:475–483

    Article  CAS  Google Scholar 

  • Innocenti G, Pucciariello C, Le Gleuher M, Hopkins J, de Stefano M et al (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225(6):1597–1602

    Article  CAS  PubMed  Google Scholar 

  • Isaacs KB, Snapp SS, Chung K, Waldman KB (2016) Assessing the value of diverse cropping systems under a new agricultural policy environment in Rwanda. Food Security: The Science, Sociology and Economics of Food Production and Access to Food 8(3):491–506

    Article  Google Scholar 

  • Jaber LR, Enkerli J (2016) Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol Control 103:187–195

    Article  CAS  Google Scholar 

  • Jaber LR, Enkerli J (2017) Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Sci Technol 27:28–41

    Article  Google Scholar 

  • Jaber LR, Ownley BH (2018) Canwe use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45

    Article  Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agro-ecosystem. Mol Ecol 8:S159–S173

    Article  Google Scholar 

  • Jasiński M, Kachlick P, Rodziewicz P, Figlerowicz M, Stobiecki M (2009) Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol Biochem 47(9):847–853

    Article  CAS  PubMed  Google Scholar 

  • Johnson W, Gepts P (2002) The role of epistasis in controlling seed yield and other agronomic traits in an (Phaseolus vulgaris L.). Euphytica 125:69–79

    Article  CAS  Google Scholar 

  • Johnson W, Guzmán P, Mandala D, Mkandawire ABC, Temple S et al (1997) Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Sci 37:248–254

    Article  CAS  Google Scholar 

  • Jung G, Coyne D, Scroch P, Nienhuis J, Bokosi J et al (1996) Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common beans. J Am Soc Hort Sci 121:794–803

    Article  CAS  Google Scholar 

  • Jung G, Coyne DP, Bokosi JM, Steadman JR, Nienhuis J (1998) Mapping genes for specific and adult plant resistance to rust and abaxial leaf pubescence and their genetic relationship using random amplified polymorphic DNA (RAPD) markers in common bean. J. Am. Soc. Hort. Sci. 123:859–863

    Article  CAS  Google Scholar 

  • Jung G, Skroch P, Coyne D, Nienhuis J, Arnaud-Santana E et al (1997) Molecular-markers-based genetic analysis of tepary bean derived common bacterial blight resistance in different developmental stage of common bean. J Am Soc Hort Sci 122:329–337

    Article  CAS  Google Scholar 

  • Kabaluk JT, Ericsson JD (2007) Seed treatment increases yield of field corn when applied for wireworm control. Agron J 99:1377–1381

    Article  Google Scholar 

  • Karou M, Oweis T (2012) Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment. Agri Water Manag 107:94–103

    Article  Google Scholar 

  • Keller B, Manzanares C, Jara C, Lobaton JD, Studer B et al (2015) Fine–mapping of a major QTL controlling angular leaf spot resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 128:813–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly JD (1997) A review of varietal response to bean common mosaic potyvirus in Phaseolus vulgaris. Plant Var Seeds 10:1–6

    Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Article  Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Haley SD et al (1994) Registration of “Raven” black bean. Crop Sci 34:1406–1407

    Article  Google Scholar 

  • Kelly JD, Stavely R, Mikla P, Afanador L, Haley SD (1993) Pyramiding rust resistance genes using RAPD markers. Annu Rept Bean Improv Coop 36:166–167

    Google Scholar 

  • Kelly JD, Vallejo V (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39:1196–1207

    Article  CAS  Google Scholar 

  • Kelly JD, Young RA (1996) Proposed symbols for anthracnose resistance genes. Annu Rept Bean Improv Coop 39:20–24

    Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142(3):1180–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KD, Baidouri ME, Abernathy B, Iwata-Otsubo A, Chavarro C et al (2015) A comparative epigenomic analysis of polyploidy-derived genes in soybean and common bean. Plant Physiol 168(4):1433–1447. https://doi.org/10.1104/pp.15.00408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiryowa M, Nkalubo ST, Mukankusi C, Talwana H, Gibson P, Tukamuhabwa P (2015) Effect of marker aided pyramiding of anthracnose and Pythium root rot resistance genes on plant agronomic characters among advanced common bean genotypes. J Agric Sci 7:98–104

    Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43:539–548

    Article  CAS  Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331

    Article  CAS  PubMed  Google Scholar 

  • Lacanallo GF, Gonçalves-Vidigal MC (2015) Mapping of an Andean gene for anthracnose resistance (Co-13) in common bean (Phaseolus vulgaris L.) JaloListras Pretas landrace. Aust J Crop Sci 9:394–400

    CAS  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M et al (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht H (1961) Weitere Kopplungsstudien an Phaseolus vulgaris mit einer Ubersicht ber die Koppelungsgruppen. Agri Hort Genet 19:319–332

    Google Scholar 

  • Lefort MC, McKinnon AC, Nelson TL, Glare TR (2016) Natural occurrence of the entomopathogenic fungi Beauveria bassiana as a vertically transmitted endophyte of Pinus radiate and its effect on above- and below-ground insect pests. NZ Plant Protec 69:68–77

    Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebenberg MM, Pretorius ZA (1997) A review of angular leaf spot of common bean (Phaseolus vulgaris L.). Afr Plant Prot 3:81–106

    Google Scholar 

  • Lima Castro SA, Gonçalves-Vidigal MC, Gilio TAS, Lacanallo GF, Valentini G et al (2017) Genetics and mapping of a new anthracnose resistance locus in andean common bean Paloma. BMC Genomics 18:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link W, Balko C, Stoddard FL (2010) Winter hardiness in faba bean: physiology and breeding. Field Crops Res 115:287–296

    Article  Google Scholar 

  • Lioi L (1989) Varition in the storage protein phaseolin in common bean (Phaseolus vulgaris L.) from the Mediterranean area. Euphytica 44:151–155

    Article  CAS  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E et al (2007) Expression of AtWRKY33 encoding a pathogen-or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant-Microbe Interact 20(4):420–429

    Article  CAS  PubMed  Google Scholar 

  • Lobaton JD, Miller T, Gil J, Ariza D, de la Hoz JF et al (2018a) Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome 11(2):1–21

    Article  Google Scholar 

  • Lobaton JD, Miller T, Gil J, Ariza D, de la Hoz JF et al (2018b) Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome 11:170068

    Article  Google Scholar 

  • Long R, Temple S, Meyer R, Schwankl L, Godfrey L et al. (2014) Lima bean production in California. UC ANR Publication 8505. http://beans.ucanr.edu/files/204221.pdf

  • López-Llorca LV, Hans-Börje J (2001) Biodiversidad del suelo: control biológico de nematodos fitopatógenos por hongos nematófagos. Cuaderno Biodiv 3(6):12–15

    Article  Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A et al (1993) Chitinolytic enzymes produced by Trichoderma harzianum : antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83(3):302–307

    Article  CAS  Google Scholar 

  • Lorito M, Hayes CK, Di Pietro A, Woo SL, Harman GE (1994) Purification, characterization, and synergistic activity of a glucan 1,3-β-glucosidase and an N-acetyl-β-glucosaminidase from Trichoderma harzianum. Phytopathology 84(4):398–405

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Garcia I, Colucci G, Harman GE et al (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95(14):7860–7865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: From ’omics to the field. Annu Rev Phytopathol 48(1):395–417

    Article  CAS  PubMed  Google Scholar 

  • Loscos J, Matamoros MA, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146(3):1282–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42(7–8):671–679

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M et al (2004) In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl Environ Microbiol 70(5):3073–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu ZX, Gaudet DA, Frick M, Puchalski B, Genswein B et al (2005) Identification and characterization of genes differentially expressed in the resistance reaction in wheat infected with Tilletia tritici, the common bunt pathogen. BMB Rep 38(4):420–431

    Article  CAS  Google Scholar 

  • Luana MD, Gonela A, Elias HT, da Silva CR, Pastre HHet al (2017)Common bean germplasm resistant to races 73 and 2047 of Colletotrichum lindemuthianum. Afr J Biotechnol 16(19):1142–49. http://academicjournals.org/journal/AJB/article-abstract/79EE2BB64180

  • Lukatkin A, Brazaityte A Bobinas C. Duchovskis P (2012). Chilling injury in chilling-sensitive plants: a review. Zemdirbyste Agri 99:111-124

    Google Scholar 

  • Lupwayi NZ, Kennedy AC, Chirwa RM (2011) Grain legume impacts soil biological processes in sub-Saharan Africa. Afr J Plant Sci 5:1–7

    Google Scholar 

  • Macías FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ et al (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63(9):1197–1200

    Article  CAS  PubMed  Google Scholar 

  • Maehara N, Kanzaki N (2013) Effect of aging in adult Monochamus alternatus (Coleoptera: Cerambycidae) on the susceptibility of the beetle to Beauveria bassiana (Ascomycota:Hypocreales). J Forest Res 19(3):357–360

    Article  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi E (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580–585

    CAS  Google Scholar 

  • Mahuku GS, Henríquez MA, Montoya C, Jara C, Teran H et al (2011) Inheritance and development of molecular markers linked to angular leaf spot resistance genes in the common bean accession G10909. Mol Breed 28:57–71

    Article  Google Scholar 

  • Mahuku GS, Iglesias ÁM, Jara C (2009) Genetics of angular leaf spot resistance in the Andean common bean accession G5686 and identification of markers linked to the resistance genes. Euphytica 167:381–396

    Article  CAS  Google Scholar 

  • Malmierca MG, Barua J, Mccormick SP, Izquierdo-Bueno I, Cardoza RE et al (2014) Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defence priming. Environ Microbiol 17(4):1103–1118

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG et al (2013) Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R et al (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78(14):4856–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maqbool A, Shafiq S, Lake L (2010) Radiant frost tolerance in pulse crops - a review. Euphytica 172:1–12

    Article  Google Scholar 

  • Marchive C, Léon C, Kappel C, Coutos-Thévenot P, Corio-Costet MF et al (2013) Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS One 8(1):e54185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus. Z Naturforsch C 57(5–6):465–470

    Article  CAS  PubMed  Google Scholar 

  • Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2003) Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry 62(5):715–721

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  CAS  PubMed  Google Scholar 

  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL et al (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50(5):307–321

    Article  CAS  PubMed  Google Scholar 

  • Martínez B, Infante I, Ii D, Reyes Y (2013) Trichoderma spp. y su función en el control de plagas en los cultivos. Rev Protec Vegetal 28:1–11

    Google Scholar 

  • Mauch F, Dudler R (1993) Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102(4):1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of Phenylalanine Ammonia-Lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8(2):203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell JJ, Brick MA, Byrne PF, Schwartz H, Shan X et al (2007) Quantitative trait loci linked to white mold resistance in common bean. Crop Sci 47:2285–2294

    Article  Google Scholar 

  • Mayo S, Cominelli E, Sparvoli F, González-López O, Rodríguez-González A et al (2016a) Development of a qPCR strategy to select bean genes involved in plant defense response and regulated by the Trichoderma velutinumRhizoctonia solani interaction. Front Plant Sci 7:1109

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayo S, Gutiérrez S, Cardoza RE, Hermosa R, Monte E et al (2017) Trichoderma species as biocontrol agents in legumes. In: Clemente A, Jiménez-López JC (eds) Legumes for global food security. Nova Science Publishers, New York, USA, pp 73–100

    Google Scholar 

  • Mayo S, Gutierrez S, Malmierca MG, Lorenzana A, Campelo MP et al (2015) Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front Plant Sci 6:685–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayo S, Izquierdo H, González-López Ó, Rodríguez-González Á, Lorenzana A et al (2016b) Effect of farnesol, a compound produced by Trichoderma when growing on bean (Phaseolus vulgaris L.). Planta Med 82(S01):S1–S381

    Google Scholar 

  • Mayor-Duran VM, Raatz B, Blair MW (2016) Desarrollo de líneas de frijol (Phaseolus vulgaris L.) tolerante a sequía a partir de cruces inter-acervo con genotipos procedentes de diferentes orígenes (Mesoamericano y Andino). Acta Agron 65:431–437

    Article  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClean PE, Burridge J, Beebe S, Rao IM, Porch TG (2011) Crop improvement in the era of climate change: An integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris L.). Funct Plant Biol 38:927–933

    Article  PubMed  Google Scholar 

  • McConnell M, Mamidi S, Lee R, Chikara S, Rossi M et al (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.).Theor Appl Genet 121(6):1103–1116

    Google Scholar 

  • McRostie GP (1919) Inheritance of anthracnose resistance as indicated by a cross between a resistant and a susceptible bean. Phytopathology 9:141–148

    Google Scholar 

  • Melotto M, Kelly JD (2000) An allelic series at the Co-1 locus for anthracnose in common bean of Andean origin. Euphytica 116:143–149

    Article  Google Scholar 

  • Mendéz-Vigo B, Rodríguez C, Pañeda A, Ferreira JJ, Giraldez R (2005) Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141:237–245

    Article  CAS  Google Scholar 

  • Menjivar-Barahona RD (2010) The systemic activity of mutualistic endophytic fungi in Solanaceae and Cucurbitaceae plants on the behaviour of the phloem-feeding insects Trialeurodes vaporariorum, Aphis gossypii and Myzus persicae. Inaugural dissertation PhD. Rhenish FriedrichWilhelm University, Bonn, Germany, 120 pp

    Google Scholar 

  • Mensack MM, Fitzgerald VK, Ryan E, Lewis MR, Thompson HJ et al. (2010) Evaluation of diversity among common beans (Phaseolus vulgaris L.) from two centers of domestication using ‘omics’ technologies. BMC Genomics 11(1):686. http://www.biomedcentral.com/1471-2164/11/686/

  • Mensack MM, McGinley JN, Thompson HJ (2012) Metabolomic analysis of the effects of edible dry beans (Phaseolus vulgaris L.) on tissue lipid metabolism and carcinogenesis in rats. Brit J Nutr 108 Suppl 1S155-165

    Google Scholar 

  • Meyers JM, Stephen FM, Haavik LJ, Steinkraus DC (2013) Laboratory and field bioassays on the effects of Beauveria bassiana Vuillemin (Hypocreales: Cordycipitaceae) on red oak borer, Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae). Biol Control 65:258–264

    Article  Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43(2):145–155

    Article  Google Scholar 

  • Meziadi C, Richard MMS, Derquennes A, Thareau V, Blanchet S, Gratias A et al (2016) Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci 242:351–357

    Article  CAS  PubMed  Google Scholar 

  • Mhlongo MI, Steenkamp PA, Piater LA, Madala NE, Dubery IA (2016) Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents. Front Plant Sci 7:1527

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaels TE, Smith TH, Larsen J, Beattie AD, Pauls KP (2006) OAC Rex common bean. Can. J. Plant Sci. 86:733736

    Article  Google Scholar 

  • Mienie CM, Liebenberg MM, Pretorius ZA, Miklas PN (2005) SCAR markers linked to the common bean rust resistance gene Ur-13. Theor Appl Genet 111:972–979

    Article  CAS  PubMed  Google Scholar 

  • Miklas PN, Stavely JR, Kelly JD (1993) Identification and potential use of a molecular marker for rust resistance in common bean. Theor Appl Genet 85:745–749

    Article  CAS  PubMed  Google Scholar 

  • Miklas P, Fourie D, Trapp J, Larsen RC, Chavarro C, Blair MW, Gepts P (2011) Genetic characterization and molecular mapping Pse-2 gene for resistance to halo blight in common bean. Crop Sci 51:2439–2448

    Article  CAS  Google Scholar 

  • Miklas P, Fourie D, Wagner J, Larsen RC, Mienie CMC (2009) Tagging and mapping Pse-1 gene for resistance to halo blight in common bean host differential cultivar UI-3. Crop Sci 49:2009

    Article  CAS  Google Scholar 

  • Miklas PN, Delorme R, Stone V, Stavely J, Steadman J et al (2000) Bacterial, fungal, virus disease loci mapped in a recombinant inbred common bean population (‘Dorado/XAN176’). J Am Soc Hort Sci 125:476–481

    Article  CAS  Google Scholar 

  • Miklas PN, Fourie D, Trapp J, Davis J, Myers JR (2014) New loci including Pse-6 conferring resistance to halo bacterial blight on chromosome Pv04 in common bean. Crop Sci 54:2099–2108

    Article  Google Scholar 

  • Miklas PN, Johnson E, Stone V, Beaver JS, Montoya C, Zapata M (1996) Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci 36:1344–1351

    Article  CAS  Google Scholar 

  • Miklas PN, Johnson WC, Delorme R, Gepts P (2001) QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Sci. 41:309–315

    Article  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006a) Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Miklas PN, Kelly JD, Singh SP (2003) Registration of anthracnose resistant Pinto Bean germplasm line USPT-ANT-1. Crop Sci 43:1889–1890

    Article  Google Scholar 

  • Miklas PN, Larsen KM, Terpstra KA, Hauf DC, Grafton KF, Kelly JD (2007) QTL analysis of ICA Bunsi-derived resistance to white mold in a pinto x navy bean cross. Crop Sci 47:174–179

    Article  CAS  Google Scholar 

  • Miklas PN, Pastor-Corrales MA, Jung G, Coyne DP, Kelly JD, Mcclean PE, Gepts P (2002) Comprehensive linkage map of bean rust resistance genes. Annu Rep Bean Improv Coop 45:125–129

    Google Scholar 

  • Miklas PN, Porter LD, Kelly JD, Myers JR (2013) Characterization of white mold disease avoidance in common bean. Eur J Plant Pathol 135:525–543

    Article  Google Scholar 

  • Miklas PN, Smith JR, Singh SP (2006b) Registration of common bacterial blight resistant dark red kidney bean germplasm line USDK-CBB-15. Crop Sci 46:1005

    Article  Google Scholar 

  • Miklas PN, Stone V, Urrea CA, Johnson E, Beaver JS (1998) Inheritance and QTL analysis offield resistance to ashy stem blight. Crop Sci 38:916–921

    Article  Google Scholar 

  • Miller T, Gepts P, Kimmo S, Arunga E, Chilagane LA, Nchimbi-Msolla S, Namusoke A, Namayanja A, Tedla YR (2018) Alternative markers linked to the Phg-2 angular leaf spot resistance locus in common bean using the phaseolus genes marker database. African Journal Biotechnology 17:818–828

    Article  Google Scholar 

  • Mkwaila W, Terpstra KA, Ender M, Kelly JD (2011) Identification of QTL for resistance to white mold in wild and landrace germplasm of common bean. Plant Breed 130:665–672

    Article  Google Scholar 

  • Moghaddam SM, Mamidi S, Osorno JM, Lee R, Brick M et al. (2016) Genome-wide association study identifies candidate loci underlying agronomic traits in a middle american diversity panel of common bean. Plant Genome 9(3): 1–21. https://dl.sciencesocieties.org/publications/tpg/abstracts/9/3/plantgenome2016.02.0012

  • Moghaddam SM, Song Q, Mamidi S, SchmutzJ Lee R et al (2014) Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L. Front Plant Sci 5:1–14

    Article  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M et al (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Monte E (2001) Understanding Trichoderma : between biotechnology and microbial ecology. Int Microbiol 4:1–4

    CAS  PubMed  Google Scholar 

  • Montero M, Sanz L, Rey M, Llobell A, Monte E (2007) Cloning and characterization of bgn16·3, coding for a β-1,6-glucanase expressed during Trichoderma harzianum mycoparasitism. J Appl Microbiol 103(4):1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Montero M, Sanz L, Rey M, Monte E, Llobell A (2005) BGN16.3, a novel acidic β-1,6-glucanase from mycoparasitic fungus Trichoderma harzianum CECT 2413. FEBS J. 272(13):3441–3448

    Google Scholar 

  • Moons A (2005) Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm 72:155–202

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63(3):708–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukeshimana G, Butare L, Cregan PB, Blair MW, Kelly JD (2014) Quantitative trait loci associated with drought tolerance in common bean. Crop Sci 54:923–938

    Article  Google Scholar 

  • Mwenda GN, O’Hara GW, De Meyer SE, Hwieson JG, Terpolilli JJ (2018) Genetic diversity and symbiotic effectiveness of Phaseolus Vulgaris-nodulating rhizobia in Kenya”. Syst Appl Microbiol 41(4):1–9. https://doi.org/10.1016/j.syapm.2018.02.001

    Article  Google Scholar 

  • Naderpour M, Lund OS, Larsen R, Johansen E (2010) Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. Mol Plant Pathol 11:255–263

    Article  CAS  PubMed  Google Scholar 

  • Namayanja A, Buruchara R, Mahuku G, Rubaihayo P, Kimani P, Mayanja S, Eyedu H (2006) Inheritance of resistance to angular leaf spot in common bean and validation of the utility of resistance linked markers for marker assisted selection out side the mapping population. Euphytica 151:361–369

    Article  CAS  Google Scholar 

  • Narasimhan ML, Bressan RA, D’Urzo MP, Jenks MA, Mengiste T (2009) Unexpected turns and twists in structure/function of PR-proteins that connect energy metabolism and immunity. Adv Bot Re. 51:439–489

    Article  CAS  Google Scholar 

  • Nemchinova YP, Stavely JR (1998) Development of SCAR primers for the Ur-3 rust resistance gene in common bean. Phytopathology 88:S67

    Google Scholar 

  • Nicoglou A, Merlin F (2017) Epigenetics: a way to bridge the gap between biological fields. Studies in history and philosophy of science part C: Stud Hist Philos Biol Biomedl Sci 66:73–82

    Article  Google Scholar 

  • Nielsen KF, Gräfenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53(21):8190–8196

    Article  CAS  PubMed  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean. 1. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    Article  CAS  PubMed  Google Scholar 

  • Noordermeer MA, Veldink GA, Vliegenthart JFG (2001) Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. Chembiochem 2(7–8):494–504

    Article  CAS  PubMed  Google Scholar 

  • Nugroho LH, Verberne MC, Verpoorte R (2002) Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiol Biochem 40(9):755–760

    Article  CAS  Google Scholar 

  • Oblessuc P, Baroni R, Garcia AA, Chioratto AF, Carbonell SA, Camargo LE, Benchimol L (2012) Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genetics 13:50

    Google Scholar 

  • Oblessuc PR, Perseguini JMKC, Baroni RM, Chioratto AF, Carbonell SA, Mondero JM, Vidal RO, Camargo LE, Benchimol L (2013) Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean. Theor Appl Genet 126:2451–2465

    Article  CAS  PubMed  Google Scholar 

  • O’Boyle PD, Kelly JD, Kirk WW (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J. Amer Soc Hort Sci 132:381–386

    Article  Google Scholar 

  • Odogwu BA, Nkalubo ST, Mukanski C, Paparu P, Payrick R et al. (2016) Prevalence and variability of the common bean rust in Uganda.” Afri J Agri Res 11(49):4990–99. http://academicjournals.org/journal/AJAR/article-abstract/E7B3D8E62040

  • Ojwang PPO, Melis R, Songa JM, Githiri M, Bett C (2009) Participatory plant breeding approach for host plant resistance to bean fly in common bean under semi-arid Kenya conditions. Euphytica 170(3):383–393

    Article  Google Scholar 

  • Okii D, Tukamuhabwa P, Kami J, Namayanja A, Paparu P et al (2014) The genetic diversity and population structure of common bean (Phaseolus vulgaris L) germplasm in Uganda. Afr J Biotechnol 13(29): 2935–49. http://academicjournals.org/journal/AJB/article-abstract/59E971146091

  • Oldroyd GE, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  PubMed  Google Scholar 

  • O’Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL et al (2016) Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas Syringae Pv. phaseolicola. Plant Cell Environ 39(10):2172–84

    Google Scholar 

  • Oliveira EJ, Alzate-Marin AL, Borém A, Azeredo Fagundes S, Barros EG, Moreira MA (2005) Molecular marker-assisted selection for development of common bean lines resistant to angular leaf spot. Plant Breed 124:572–575

    Article  Google Scholar 

  • Oliveira MRC, Corrêa AS, de Souza GA, Guedes RNC, Oliveira LO (2013) Mesoamerican origin and pre- and post-columbian expansions of the ranges of Acanthoscelides obtectus Say, a cosmopolitan insect pest of the common bean. PLoS One 8:e70039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omae H, Kumar A, Shono M (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot (2012) ID 803413. https://doi.org/10.1155/2012/803413

  • Osorno JM, McClean PE (2014) Common bean genomics and its applications in breeding programs. In: Gupta S, Nadarajan N, Gupta D (eds) Legumes in the Omic Era. Springer, New York, pp 185–206

    Chapter  Google Scholar 

  • Ownley B, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol 55:113–128

    Article  Google Scholar 

  • Padder BA, Sharma PN, Awale HE, Kelly JD (2017) Colletotrichum lindemuthianum, the causal agent of bean anthracnose. J Plant Pathol 99(2):317–330. https://doi.org/10.4454/jpp.v99i2.3867

    Article  Google Scholar 

  • Palacios XF (1998) Contribution to the estimation of countries’ interdependence in the area of plant genetic resources’. Commission on Genetic Resources for Food and Agriculture, Background Study Paper No. 7, Rev. 1 (Food and Agriculture Organization of the United Nations), Rome, Italy

    Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150(4):1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa R, Acosta J, Delgado-Salinas A, Gepts PA (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Belluci E, Rossi M, Leonardi S, Rau D et al (2007) Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. Ann Bot 100:1039–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    Article  CAS  PubMed  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23(1):23–54

    Article  Google Scholar 

  • Pardo de Santayana M, Morales R, Aceituno-Mata L, Molina M (eds.) (2014) Inventario español de los conocimientos tradicionales relativos a la biodiversidad. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid, España, 411 p

    Google Scholar 

  • Park SO, Coyne DP, Steadman JR, Skroch PW (2001) Mapping of QTL for resistance to white mold diseases in common bean. Crop Sci 41:1253–1262

    Article  CAS  Google Scholar 

  • Parker SR, Cutler HG, Schrelner PR (1995) Koninginin C: A biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59(6):1126–1127

    Article  CAS  PubMed  Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: When is it useful to breeders? Funct Plant Biol 39:851–859

    Article  PubMed  Google Scholar 

  • Paszkowski J (2015) Controlled activation of retrotransposition for plant breeding. Curr Opin Biotechnol 32:200–206. https://doi.org/10.1016/j.copbio.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  • Paul UV, Lossini JS, Edwards PJ, Hilbeck A (2009) Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (both Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. J Stored Prod Res 45:97–107

    Article  Google Scholar 

  • Paulitz TC (1990) Biochemical and ecological aspect of competition in biological control. In New directions in biological control. Alternatives for suppressing agricultural, Pests and diseases, Baker RR, Dunn PE (eds) Wiley-Liss Inc, New York, USA, p 837

    Google Scholar 

  • Pedraza F, Gallego G, Beebe S, Tohme J (1997) Marcadores SCAR y RAPD para la resistencia a la bacteriosis comun (CBB). In: Singh SP, Voysest O (eds) Taller de mejoramiento de frijol para el siglo XXI, bases para una estrategia para America Latina. CIAT, Cali, Colombia, pp 130–134

    Google Scholar 

  • Pereira JL, Queiroz RML, Charneau SO, Felix CR, Ricart CAO et al (2014) Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani. PLoS One 9(5):e98234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Vega E, Pascual A, Campa A, Giraldez R, Miklas PN, Ferreira JJ (2012) Mapping quantitative trait loci conferring partial physiological resistance to white mold in the common bean RIL populationXana x Cornell 49242. Mol Breed 29:31–41

    Article  CAS  Google Scholar 

  • Perry G, DiNatale C, Xie W, Navabi A, Reinprecht Y et al (2013) A comparison of the molecular organization of genomic regions associated with resistance to common bacterial blight in two Phaseolus vulgaris genotypes. Front Plant Sci 4:318. https://doi.org/10.3389/fpls.2013.00318

    Article  PubMed  PubMed Central  Google Scholar 

  • Piergiovanni A, Taranto G, Losavio FP, Pignone D (2006) Common bean (Phaseolus vulgaris L.) landraces from Abruzzo and Lazio regions (Central Italy). Genet Resour Crop Evol 53:313–322

    Article  Google Scholar 

  • Pimentel C, Laffray D, Louguet P (1999) Intrinsic water use efficiency at the pollination stage as a parameter for drought tolerance in Phaseolus vulgaris. Physiol Plant 106:184–189

    Article  CAS  Google Scholar 

  • Polania JA, Poschenrieder C, Beebe SE, Rao IM (2016) Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Front Plant Sci 7:660. https://doi.org/10.3389/fpls.2016.00660

    Article  PubMed  PubMed Central  Google Scholar 

  • Porch TG (2006) Application of stress indices for heat tolerance screening of common bean. J Agron Crop Sci 192:390–394

    Article  Google Scholar 

  • Porch TG, Beaver JS, Brick MA (2013a) Registration of tepary germplasm with multiple-stress tolerance, TARS-Tep 22 and TARS-Tep 32. J Plant Reg 7:358–364

    Article  Google Scholar 

  • Porch TG, Beaver JS, Debouck DG, Jackson SA, Kelly JD, Dempewolf H (2013b) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3:433–461

    Article  Google Scholar 

  • Porch TG, Smith JR, Beaver JS, Griffiths PD Canaday CH (2010) TARS-HT1 and TARS-HT2 heat-tolerant dry bean germplasm. HortScience 45:1278-1280

    Google Scholar 

  • Porch TG, Urrea CA, Beaver JS, Valentin S, Peña PA, Smith JR (2012) Registration of TARS-MST1 and SB-DT1 multiple-stress-tolerant black bean germplasm. J Plant Reg 6:75–80

    Article  Google Scholar 

  • Pucheta-Díaz M, Flores-Macías A, Rodríguez-Navarro S, De La Torre M (2006) Mecanismo de acción de los hongos entomopatógenos. Interciencia 31:856–860

    Google Scholar 

  • Purcell LC (2009) Physiological responses of N2 fixation to drought and selecting genotypes for improved N2 fixation. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. American Society of Agronomy, Madison, USA, pp 211–238

    Google Scholar 

  • Quesada-Moraga E, López-Díaz C, Landa BB (2014) The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission. PLoS One 9(2):e89278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintela ED (2002) Manual de identificação dos insetos e outros invertebrados pragas do feijoeiro. Santo Antônio de Goiás: Embrapa Arroz e Feijão 142:51

    Google Scholar 

  • Ragagnin VA, De Souza TLPO, Sanglard DA, Arruda KMA, Costa MR, Alzate-Marin AL, Carneiro JE, De Barros EG (2009) Development and agronomic performance of common bean lines simultaneously resistant to anthracnose, angular leaf spot and rust. Plant Breed 128:156–163

    Article  Google Scholar 

  • Rainey KM, Griffiths PD (2005) Inheritance of heat tolerance during reproductive development in snap bean (Phaseolus vulgaris L.). J Amer Soc Hort Sci 130:700–706

    Article  Google Scholar 

  • Ramaekers L, Galeano CH, Garzón N, Vanderleyden J, Blair MW (2013) Identification of quantitative trait loci for symbiotic nitrogen fixation capacity and related traits in common bean. Mol Breed 31:163–180

    Article  CAS  Google Scholar 

  • Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RV (2015) Proteomics and metabolomics: two emerging areas for legume improvement. Front Plant Sci 1:21. http://journal.frontiersin.org/Article/10.3389/fpls.2015.01116/abstract

  • Ramirez Builes VH, Porch TG, Harmsen EW (2011) Genotypic differences in water use efficiency of common bean under drought stress. Agron J 103:1206–1215

    Article  Google Scholar 

  • Ramírez S, Suris M (2015) Ciclo de vida de Acanthoscelides obtectus (Say.) sobre frijol negro (Phaseolus vulgaris L.) en condiciones de laboratorio. Rev Protec Veg 30(2): 158-160

    Google Scholar 

  • Ramirez-Cabral NYZ, Kumar L, Taylor S (2016) Crop niche modeling projects major shifts in common bean growing areas. Agri For Meteorol 218:102–113

    Article  Google Scholar 

  • Rao IM, Beebe SE, Polania J, Ricaurte J, Cajiao C et al (2013) Can tepary bean be a model for improvement of drought resistance in common bean? Afr Crop Sci J 21:265–281

    Google Scholar 

  • Razinger J, Lutz M, Schroers HJ, Urek G, Grunder J (2014) Evaluation of insect associated and plant growth promoting fungi in the control of cabbage root flies. J Econ Entomol 107(4):1348–1354

    Article  PubMed  Google Scholar 

  • Razinger J, Zerjav M, Zemljic-Urbancic M, Modic S, Lutz M et al (2017) Comparison of Sauliflower-insect-fungus interactions and pesticides for cabbage root fly control. Insect Sci 24(6):1057–1064

    Article  CAS  PubMed  Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    Article  CAS  PubMed  Google Scholar 

  • Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 109:265–273

    Article  CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2007) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7(1):89–123

    Article  CAS  Google Scholar 

  • Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez, et al (2017) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 18(60):1–17

    Google Scholar 

  • Richards MS, Pflieger S, Sévignac M, Thareau V, Blanchet S et al (2014) Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. Theor Appl Genet 127:1653–1666

    Article  CAS  Google Scholar 

  • Rockstrӧm J, Falkenmark M, Karlberg L, Hoff H, Rost S et al (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45:W00A12, https://doi.org/10.1029/2007wr006767

  • Rodiño AP, De La Fuente M, De Ron AM, Lema MJ, Drevon JJ et al (2011) Variation for nodulation and plant yield of common bean genotypes and environmental effects on the genotype expression. Plant Soil 346:349–361

    Article  CAS  Google Scholar 

  • Rodiño AP, Riveiro M, Santalla M, De Ron AM (2007) Sources of variation of common bean for drought tolerance. Annu Rept Bean Improv Coop 50:163–164

    Google Scholar 

  • Rodiño P, Santalla M, González AM, De Ron AM, Singh SP (2006) Novel genetic variation in common bean from the Iberian Peninsula. Crop Sci 46:2540–2546

    Article  CAS  Google Scholar 

  • Rodríguez-González A, Casquero PA, Suárez-Villanueva V, Carro-Huerga G, Mayo-Prieto S et al (2018) Effect of trichodiene production by Trichoderma harzianum on Acanthoscelides obtectus. J Stored Prod Res 77:231–239. https://doi.org/10.1016/j.jspr.2018.05.001

    Article  Google Scholar 

  • Rodríguez-González A, Mayo S, González-López O, Reinoso B, Gutiérrez S et al (2017a) Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae). Environ Monitor Assess 189:12

    Google Scholar 

  • Rodríguez-González A, Peláez HJ, GonzálezNúñez M, Casquero PA (2017b) Control of egg and neonate larvae of Xylotrechus arvicola (Coleoptera: Cerambycidae), a new vineyard pest, under laboratory conditions. Aust J Grape Wine Res 23:112–119

    Article  CAS  Google Scholar 

  • Rodríguez-González A, Peláez HJ, Mayo S, González-López O, Casquero PA (2016) Egg development and toxicity of insecticides to eggs, neonate larvae and adults of Xylotrechus arvicola, a pest in Iberian grapevines. Vitis 5:83–93

    Google Scholar 

  • Rodríguez-Suárez C, Ferreira JJ, Campa A, Pañeda A, Giradles R (2008) Molecular mapping and intra-cluster recombination between anthracnose race-specific resistance genes in the common bean differential cultivars Mexico 222 and Widusa. Theor. Appl. Genet. 116:807–814

    Article  CAS  PubMed  Google Scholar 

  • Román-Aviles B, Beaver JS (2003) Inheritance of heat tolerance in common bean of Andean origin. J Agri Univ Puerto Rico 87:113–121

    Google Scholar 

  • Román-Avilés B, Kelly JD (2005) Identification of quantitative trait loci conditioning resistance to fusarium root rot in common bean. Crop Sci. 45:1881–1890

    Article  CAS  Google Scholar 

  • Romero-Napoles J, Johnson CD (2004) Database BRUCOL. Programa de Entomología, Instituto de Fitosanidad, Colegio de Postgraduados, México

    Google Scholar 

  • Rosado IV, Rey M, Codón AC, Govantes J, Moreno-Mateos MA, Benítez T (2007) QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol 44(10):950–964

    Article  CAS  PubMed  Google Scholar 

  • Rosas JC, Beaver JS, Escoto D, Perez CA, Llano A et al (2004) Registration of ‘Amadeus 77’ small red common bean. Crop Sci 44:1867–1868

    Article  Google Scholar 

  • Rosas JC, Castro A, Beaver JS, Perez CA, Morales A et al (2000) Mejoramiento genético para tolerancia a altas temperaturas y resistencia al mosaico dorado en frijol común. Agron Mesoam 11:1–10

    Article  Google Scholar 

  • Rossi M, Bitocchi E, Belluci E, Nanni L, Rau D et al (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl 2:504–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubio MB, Hermosa MR, Keck E, Monte E (2005) Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microb Eco 49(1):25–33

    Article  CAS  Google Scholar 

  • Rubio MB, Hermosa R, Reino J, Collado I, Monte E (2009) Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Rumbos CI, Athanassiou CG (2017) Use of entomopathogenic fungi for the control of stored-product insects: can fungi protect durable commodities? J Pest Sci 90:839–854

    Article  Google Scholar 

  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D et al (2007) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant-Microbe Interact 44(3):950–964

    Google Scholar 

  • Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P et al (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10(1):2–11

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1(4):311–315

    Article  CAS  PubMed  Google Scholar 

  • Sánchez E, Sifres A, Casañas F, Nuez F (2008) The endangered future of organoleptically prestigious European landraces: Ganxet bean (Phaseolus vulgaris L.) as an example of a crop originating in the Americas. Genet Resour Crop Evol 55:45–52

    Article  CAS  Google Scholar 

  • Sankaran S, Khot LR, Zúñiga Espinoza C, Jarolmasjed S, Sathuvalli VR et al (2015) Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur J Agron 70:112–123

    Article  Google Scholar 

  • Sankaran S, Zhou J, Khot LR, Trapp JJ, Mndolwa E et al (2018) High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery. Comput Electron Agric 151:84–92

    Article  Google Scholar 

  • Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934–944

    Article  CAS  PubMed  Google Scholar 

  • Santamaría RI et al. 2017. “Complete Genome Sequences of Eight Rhizobium Symbionts Associated with Common Bean (Phaseolus Vulgaris).” Genom Announ 5(30):1–2. e00645-17. https://doi.org/10.1128/genomea.00645-17

  • Sanz L, Montero M, Grondona I, Vizcaíno JA, Llobell A et al (2004) Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species. Curr Genet 46(5):277–286

    Article  CAS  PubMed  Google Scholar 

  • Sanz L, Montero M, Redondo J, Llobell A, Monte E (2005) Expression of an α-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J. 272:493–499

    Article  CAS  PubMed  Google Scholar 

  • Sartorato A, Nietsche S, Barros EG, Moreira MA (1999) SCAR marker linked to angular leaf spot resistance gene in common bean. Annu Rept Bean Improv Coop 42:23–24

    Google Scholar 

  • Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Amer J Bot 99:101–107

    Article  Google Scholar 

  • Saunders J, O’Neill N (2004) The characterization of defense responses to fungal infection in alfalfa. BioControl 49(6):715–728

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider KA, Grafton KF, Kelly JD (2001) QTL analyses of resistance to Fusarium root rot in bean. Crop Sci 41:535–542

    Article  CAS  Google Scholar 

  • Schneider KA, Rosales-Serna R, Ibarra-Perez F, Cazares-Enriquez B, Acosta-Gallegos JA et al (1997) Improving common bean performance under drought stress. Crop Sci 37:43–50

    Article  Google Scholar 

  • Schwartz HF, Singh SP (2013) Breeding common bean for resistance to white mold: a review. Crop Sci 53:1832–1844

    Article  Google Scholar 

  • Seidl MF, Thomma BPHJ (2017) Transposable elements direct the coevolution between plants and microbes. Trends Genet 33(11):842–851. https://doi.org/10.1016/j.tig.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  • Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273(18):4346–4359

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and Phaseolus coccineus L. landraces in central Italy. Plant Breed 124:464–472

    Article  CAS  Google Scholar 

  • Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust J Agri Res 50:375–387

    Article  Google Scholar 

  • Sidorova KK, Shumny VK, Vlasova EY, Glyanenko MN, Mishchenko TM (2011) Symbiogenetics and breeding of microsymbionts for increased nitrogen fixation capacity with special reference to the pea (Pisum sativum L.). Russ J Genet Appl Res 1:73–87

    Article  Google Scholar 

  • Simons R, Vincken JP, Bohin MC, Kuijpers TFM, Verbruggen MA et al (2011a) Identification of prenylated pterocarpans and other isoflavonoids in Rhizopus spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 25(1):55–65

    Google Scholar 

  • Simons R, Vincken JP, Roidos N, Bovee TFH, van Iersel M et al (2011b) Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J Agric Food Chem 59(12):6748–6758

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436

    Article  CAS  PubMed  Google Scholar 

  • Singh SP (1994) Gamete selection for simultaneous improvement of multiple traits in common bean. Crop Sci 34:352–355

    Article  Google Scholar 

  • Singh SP (1995) Selection for water-stress tolerance in interracial populations of common bean. Crop Sci 35:118–124

    Article  Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1671

    Article  Google Scholar 

  • Singh SP (2007) Drought resistance in the race Durango dry bean landraces and cultivars. Agron J 99:1219–1225

    Article  Google Scholar 

  • Singh SP, Gutierrez JA (1984) Geographical distribution of the Dl1, and Dl2 genes causing hybrid dwarfism in P. vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33:337–345

    Article  Google Scholar 

  • Singh SP, Miklas PN (2015) Breeding common bean for resistance to common blight: a review. Crop Sci 55:971–984

    Article  Google Scholar 

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: A review. Crop Sci 50:2199–2223

    Article  Google Scholar 

  • Sobolev VS, Neff SA, Gloer JB (2009) New stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus caelatus strain. J Agric Food Chem 57(1):62–68

    Article  CAS  PubMed  Google Scholar 

  • Soltani A, MafiMoghaddam S, Olazad-Abbasabadi A, Walter K, Kearns PJ et al (2018) Genetic analysis of flooding tolerance in an andean diversity panel of dry bean (Phaseolus vulgaris L.). Front Plant Sci 9(767):1–15

    Google Scholar 

  • Son GH, Wan J, Kim HJ, Nguyen XC, Chung WS et al (2012) Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol Plant-Microbe Interact 25(1):48–60

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. Plos One 8:1–12

    Article  CAS  Google Scholar 

  • Song Q, Jia G, Hyten DL, Jenkins J, Hwang EY et al (2015) SNP assay development for linkage map construction, anchoring whole genome sequence and other genetic and genomic applications in common bean. Gene Genome Genet 5:2285–2290

    Google Scholar 

  • Sørensen J, Sessitsch A (2007) Plant-associated bacteria-lifestyle and molecular interactions. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton, USA, pp 211–236

    Google Scholar 

  • Soule M, Porter L, Medina J, Santana GP, Blair MW et al (2011) Comparative QTL map for white mold resistance in common bean, and characterization of partial resistance in dry bean lines VA19 and I9365-31. Crop Sci 51:123–139

    Article  Google Scholar 

  • Sousa LL, Cruz AS, Vidigal Filho PS, Vallejo VA, Kelly JD et al (2014) Genetic mapping of the resistance allele Co-52 to Colletotrichum lindemuthianum in the common bean MSU 7-1 line. J Crop Sci 8:317–323

    Google Scholar 

  • Souter JR, Gurusamy V, Porch TG, Bett KE (2017) Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Sci 57:1160–1171

    Article  Google Scholar 

  • Souza TLPO, Barros EG, Bellato CM, Hwang E-Y, Cregan PC et al (2012) Single nucleotide polymorphism discovery in common bean. Mol Breed 30:419–428

    Article  CAS  Google Scholar 

  • Souza TLPO, Dessaune SN, Sanglard DA, Moreira MA, Barros EG (2011) Characterization of the rust resistance gene present in the common bean cultivar Ouro Negro the main rust resistance source used in Brazil. Plant Pathol 60:839–845

    Article  CAS  Google Scholar 

  • Souza TLPO, Gonçalves-Vidigal MC, Raatz B et al (2016) Major loci controlling resistance to the angular leaf spot of common bean. Annu Rept Bean Improv Coop 59:49–50

    Google Scholar 

  • Souza TLPO, Ragagnin VA, Dessaune SN, Sanglard DA, Carneiro JES et al (2014) DNA marker-assisted selection to pyramid rust resistance genes in “Carioca” seeded common bean lines. Euphytica 199:303–316

    Article  CAS  Google Scholar 

  • Sparvoli F, Bollini R, Cominelli E (2015) Nutritional value. In: De Ron AM (ed) Grain legumes, Series: Handbook of Plant Breeding. Springer Science+Business Media, New York, USA, pp 291–325

    Chapter  Google Scholar 

  • Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J et al (2013) Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One 8:e65688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stavely JR (1990) Genetics of rust resistance in Phaseolus vulgaris plant introduction PI181996. Phytopathology 80:1056

    Google Scholar 

  • Stavely JR (1984) Pathogenic specialization in Uromyces phaseoli in the United States and rust resistance in beans. Plant Dis 68:95–99

    Article  Google Scholar 

  • Stavely JR (1998) Recombination of two major dominant rust resistance genes that are tightly linked in repulsion. Annu Rept Bean Improv Coop 41:17–18

    Google Scholar 

  • Stavely JR (2000) Pyramiding rust and viral resistance genes using traditional and marker techniques in common bean. Annu Rept Bean Improv Coop 43:1–4

    Google Scholar 

  • Sthapit B (2013) Emerging theory and practice: community seed banks, seed system resilience and food security. In: Shrestha P, Vernooy R, Chaudhary P (eds) Community seedbanks in Nepal: Past, present, future. Proceedings of a National Workshop, 14–15 June 2012, Pokhara, Nepal. Local Initiatives for Biodiversity, Research and Development, Pokhara, Nepal, and Bioversity International, Rome, Italy, pp 16–40

    Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W et al (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186

    Article  Google Scholar 

  • Strausbaugh C, Myers J, Forster R, McClean P (1999) bc-1 and bc-u—two loci controlling bean common mosaic virus resistance in common bean are linked. J Am Soc Hort Sci 124:644–648

    Article  Google Scholar 

  • Suarez B, Rey M, Castillo P, Monte E, Llobell A (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Subramanian VV, MacQueen AJ, Vader G, Shinohara M, Sanchez A et al (2016) Chromosome synapsis alleviates Mek1-dependent suppression of meiotic DNA repair. PLoS Biol 14(2):e1002369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanyam B, Hagstrum DW (1995) Resistance measurement and management. In: Subramanyam B, Hagstrum DW (eds) Integrated management of insects in stored products. Marcel Dekker, New YorkUSA, pp 331–397

    Google Scholar 

  • Tadeo FR, Gómez-Cadenas A (2008) Fisiología de las plantas y el estrés. In: Azcón-Bieto J, Talón M (eds) Fundamentos de fisología vegetal. McGraw-Hill, Barcelona, Spain, pp 577–597

    Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2001) Mapping genetic factors affecting the reaction to Xanthomonas axono- podis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44:1046–1056

    Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556

    Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terán H, Singh SP (2002) Comparison of sources and lines selected for drought resistance in common bean. Crop Sci 42:64–70

    Article  PubMed  Google Scholar 

  • Thakur DR (2012) Taxonomy, distribution and pest status of Indian biotypes of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae). A new record. Pak J Zool 44:189–195

    Google Scholar 

  • Thi Lang N, Chi Bou B (2008) Fine mapping for drought tolerance in rice (Oryza sativa L.). Omonrice 16:9–15

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Thompson HJ, McGinley JN, Neil ES, Brick M (2017) Beneficial effects of common bean on adiposity and lipid metabolism. Nutrients 9(9):1–12

    Article  CAS  Google Scholar 

  • Thompson MD, Brick MA, McGinley JN, Thompson HJ (2009) Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Sci 49:179–186

    Article  CAS  Google Scholar 

  • Tijerino A, Hermosa R, Cardoza RE, Moraga J, Malmierca MG et al (2011) Overexpression of the Trichoderma brevicompactum tri5 gene: Effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins 3(9):1220–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tock AJ, Fourie D, Walley PG, Holub EB, Soler A et al (2017) Genome-wide linkage and association mapping of halo blight resistance in common bean to Race 6 of the globally important bacterial pathogen. Front Plant Sci 8:1–17

    Article  Google Scholar 

  • Tosquy Valle OH, López Salinas E, Villar Sánchez B, Acosta Gallegos JA, Rodríguez-Rodríguez JR (2016) Verdín: variedad de frijol negro tolerante a sequía terminal para Veracruz y Chiapas, México. Rev Mex de Cienc Agrí 7:1775–1780

    Google Scholar 

  • Trabanco N, Asensio-Manzanera MC, Pérez-Vega E, Ibeas A, Campa A et al (2014) Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola. Mol Breed 33:577–588

    Article  CAS  Google Scholar 

  • Trabanco N, Campa A, Ferreira JJ (2015). Identification of a new chromosomal region involved in the genetic control of resistance to anthracnose in common bean. Plant Genome: 8(2). https://doi.org/10.3835/plantgenome2014.10.0079

  • Trapp JJ, Urrea CA, Cregan PB, Miklas PN (2015) Quantitative trait loci for yield under multiple stress and drought conditions in a dry bean population. Crop Sci 55:1596–1607

    Article  Google Scholar 

  • Traub J, Kelly JD, Loescher W (2017) Early metabolic and photosynthetic responses to drought stress in common and tepary bean. Crop Sci 57:1670–1686

    Article  CAS  Google Scholar 

  • Trutmann P, Voss J, Fairhead J (1996) Local knowledge and farmer perceptions in bean diseases in the Central African highlands. Agri Hum Values 13:64–67

    Article  Google Scholar 

  • Tryphone GM, Chilagane L, Protas D, Kusolwa P, Nchimbi-Msolla S (2013) Marker assisted selection for common bean diseases improvements in Tanzania: prospects and future needs. In Plant breeding from laboratories to fields. Chapter 5. Andersen SB (ed). InTech. 10.5772/3362

    Google Scholar 

  • Udvardi M, Poole S (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  CAS  PubMed  Google Scholar 

  • Unkovich M, Baldock J, Forbes M (2010) Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv Agron 105:173–219

    Article  Google Scholar 

  • UPOV (1991) International Convention for the Protection of New Varieties of Plants. Geneva

    Google Scholar 

  • Valenciano JB, Casquero PA, Boto JA (2004) Influence of sowing techniques and pesticide application on the emergence and the establishment of bean plants (Phaseolus vulgaris L.). Agronomie 24(2):113–118

    Google Scholar 

  • Valentini G, Gonçalves-Vidigal MC, Hurtado-Gonzales OP, de Lima Castro SA, Cregan PB et al (2017) High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases. Theor Appl Genet 130:1705–1722

    Article  CAS  PubMed  Google Scholar 

  • Vallejo V, Kelly JD (2002) The use of AFLP analysis to tag the Co-12 gene conditioning resistance to bean anthracnose. In: Proceedings of the X conference on plant and animal genome. http://www.intl-pag.org/pag/10/abstracts/PAGX_P233.html

  • Vallejo V, Kelly JD (2009) New insights into the anthracnose resistance of common bean landrace G 2333. Open Hortic J 2:29–33

    Article  CAS  Google Scholar 

  • Vallejos C, Skroch P, Nienhuis J (2001) Phaseolus vulgaris-the common bean. Integration of RFLP- and RAPD-based linkage maps. In: Phillips R, Vasil I (eds) DNA-based markers in plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 301–317

    Chapter  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Durme MK, Nowack M (2016) Mechanism of developmentally controlled cell death in plants. Curr Opin Plant Biol 29:29–37

    Article  CAS  PubMed  Google Scholar 

  • Van Hameren B, Hayashi S, Gresshoff PM, Ferguson BJ (2013) Advances in the identification of novel factors required in soybean nodulation, a process critical to sustainable agriculture and food security. J Plant Biol Soil Health 1(1):6

    Google Scholar 

  • Vargas A (2016) Estudio de la reacción al virus del mosaico necrótico común del frijol (BCNMV) y la habilidad de fijación biológica del nitrógeno (FBN) en frijol tépari (Phaseolus acutifolius A. Gray) e introgresión de la FBN al frijol común (Phaseolus vulgaris L.). Masters Thesis, Universidad de Puerto Rico, Mayaguez, Puerto Rico

    Google Scholar 

  • Vargas WA, Crutcher FK, Kenerley CM (2011) Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytol 189(3):777–789

    Google Scholar 

  • Vargas WA, Sanz Martin JM, Rech GE, Rivera LP, Benito EP et al (2012) Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol 158(3):1342–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasconcellos RCC, Oraguzie OB, Soler A, Arkwazee H, Myers JR et al (2017) Meta-QTL for resistance to white mold in common bean. PLoS One 12:1–22

    Article  CAS  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA et al (2009) Fungal entomopathogens: new insights on their ecology. Fung Ecol 2:149–159

    Article  Google Scholar 

  • Veitch NC (2009) Isoflavonoids of the Leguminosae. Nat Prod Rep 26(6):776

    Article  CAS  PubMed  Google Scholar 

  • Velázquez-Robledo R, Contreras-Cornejo HA, Macías-Rodríguez L, Hernández-Morales A, Aguirre J et al (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant-Microbe Interact 24(12):1459–1471

    Article  CAS  PubMed  Google Scholar 

  • Vernooy R, Shrestha P, Sthapit B (eds) (2015) Community seed banks: origins, evolution and prospects. Taylor & Francis, Routledge, United KIngdom

    Google Scholar 

  • Voss J (1989) Integrating social science research into the development and testing of new agricultural technology: the case of CIAT’s Great Lakes Bean Project. In: Groenfeldt D, Moock JL (eds) Social science perspectives in managing agricultural technology. IIMI, Colombo, Sri Lanka, pp 57–62

    Google Scholar 

  • Vidigal Filho PS, Gonçalves-Vidigal MC, Silva CR, Gonela A, Lacanallo GF (2008) Identification of anthracnose resistance genes in common bean cultivars from Paraná State, Brazil. Annu Rept Bean Improv Coop 51:64–65

    Google Scholar 

  • Vigouroux Y, MacMullen M, Hittinger CT, Houchins K, Schulz L et al (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilca-Mallqui KS, Oliveira EE, Guedes RNC (2013) Competition between the bean weevils Acanthoscelides obtectus and Zabrotes subfasciatus in common beans. J Stored Prod Res 55:32–35

    Article  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R et al (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72(11):2032–2035

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ et al (2008a) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72(1–3):80–86

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL et al (2008b) Trichoderma–plant–pathogen interactions. Soil Biol. Biochem 40(1):1–10

    Article  CAS  Google Scholar 

  • Vinale F, Strakowska J, Mazzei P, Piccolo A, Marra R et al (2016) Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Nat Prod Res 30(22):2575–2581

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E et al (2002) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42(2):114–122

    Google Scholar 

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8(6):737–746

    Article  CAS  PubMed  Google Scholar 

  • Viteri DM, Cregan PB, Trapp JJ, Miklas P, Singh SP (2015) A new common bacterial blight resistance QTL in VAX 1 common bean and interaction of the new QTL, SAP6, and SU91 with bacterial strains. Crop Sci 54:1598

    Article  CAS  Google Scholar 

  • Vitti A, La Monaca E, Sofo A, Scopa A, Cuypers A et al (2015) Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl 60(1):135–147

    Article  CAS  Google Scholar 

  • Vizcaino JA, Sanz L, Basilio A, Vicente F, Gutiérrez S et al (2005) Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol Res 109(12):1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernandez-Oñate M, Minoche AE et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldman KB, Kerr JM, Isaacs KB (2014) Combining participatory crop trials and experimental auctions to estimate farmer preferences for improved common bean in Rwanda. Food Policy 46:183–192

    Article  Google Scholar 

  • Wang W, Jacobs JL, Chilvers MI, Mukankusi CM, Kelly JD et al (2018) QTL analysis of Fusarium root rot resistance in an Andean × Middle American common bean RIL population. Crop Sci 58:1–15

    Article  CAS  Google Scholar 

  • Wang Z, Huang S, Jia C, Liu J, Zhang J et al (2013) Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. cavendish). Plant Cell Rep 32(9): 1373–1380

    Google Scholar 

  • Wendel JF, Lisch D, Hu G, Mason AS (2018) The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr Opin Genet Dev 49:1–7. https://doi.org/10.1016/j.gde.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  • White JW, Conley MM (2012) A flexible, low-cost cart for proximal sensing. Crop Sci 53:1646–1649

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: Transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  CAS  PubMed  Google Scholar 

  • Woo SL, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, The Ntherlands, pp 107–130

    Chapter  Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96(2): 181–185

    Google Scholar 

  • Wu Z, Song L, Huang D (2011) Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants. J Agric Food Chem 59(11):5993–6003

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Khanal R, McClymont S, Stonehouse R, Kirstin B et al (2017) Interaction of quantitative trait loci for resistance to common bacterial blight and pathogen isolates in Phaseolus vulgaris L. Mol Breed 37:55

    Article  CAS  Google Scholar 

  • Yang MH, Lin YJ, Kuo CH, Ku KL (2010) Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t -Resveratrol and t -Piceatannol in peanut calluses. J Agric Food Chem 58(17):9518–9522

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y et al (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69(12):7343–7353

    Google Scholar 

  • Young R, Kelly JD (1996) RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Sci 37:940–946

    Article  Google Scholar 

  • Young RA, Melotto M, Nodari RO, Kelly JD (1998) Marker-assisted dissection of the oligogenic anthracnose resistance in the common bean cultivar, ‘G2333’. Theor Appl Genet 96:87–94

    Google Scholar 

  • Yu K, Park SJ, Poysa V (2000a) Marker-assisted selection of common beans for resistance to common bacterial blight: Efficacy and economics. Plant Breed 199:300–304

    Google Scholar 

  • Yu K, Park SJ, Poysa V, Gepts P (2000b) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Park SJ, Zhang B, Haffner M, Poysa V (2004) An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica 138:89–95

    Article  CAS  Google Scholar 

  • Yu Z, Stall R, Vallejos C (1998) Detection of genes for resistance to common bacterial blight of beans. Crop Sci 38:1290–1296

    Article  CAS  Google Scholar 

  • Zargar SM, Mahajan R, Nazir M, Nagar P, Kim ST et al (2017) Common bean proteomics: present status and future strategies. J Proteom 169:239–248. https://doi.org/10.1016/j.jprot.2017.03.019

    Article  CAS  Google Scholar 

  • Zargar SM, Nazir M, Rai V, Hajduch M, Agrawal GK et al (2015) Towards a common bean proteome atlas: looking at the current state of research and the need for a comprehensive proteome. Front Plant Sci 6:201. https://doi.org/10.3389/fpls.2015.00201

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeven AC (1997) The introduction of the common bean (Phaseolus vulgaris L.) into Western Europe and the phenotypic variation of dry beans collected in The Netherlands in 1946. Euphytica 94:319–328

    Article  Google Scholar 

  • Zhang J, Chen GY, Li XZ, Hu M, Wang BY et al (2017) Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat Prod Res 31(23):2745–2752

    Article  CAS  PubMed  Google Scholar 

  • Zhukov VA, Nemankin TA, Ovchinnikova ES, Kuznetsova EV, Zhernakov AI et al (2010) Creating a series of gene-specific molecular markers for comparative mapping of the genome of pea (Pisum sativum L.) and diploid alfalfa (Medicago truncatula Gaertn.). In: Kunakh VA (ed) Factors of experimental evolution of organisms. Ukraine, Logos, Kiev, pp 30–34

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

  • Zou XL, Shi C, Austin RS, Merico D, Munholland S et al (2014) Genome-wide single nucleotide polymorphism and insertion-deletion discovery through next-generation sequencing of reduced representation libraries in common bean. Mol Breed 33:769–778

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. De Ron or V. (K.) Kalavacharla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Ron, A.M. et al. (2019). Common Bean Genetics, Breeding, and Genomics for Adaptation to Changing to New Agri-environmental Conditions. In: Kole, C. (eds) Genomic Designing of Climate-Smart Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-96932-9_1

Download citation

Publish with us

Policies and ethics