Skip to main content
Log in

Cold-loving microbes, plants, and animals—fundamental and applied aspects

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Microorganisms, plants, and animals have successfully colonized cold environments, which represent the majority of the biosphere on Earth. They have evolved special mechanisms to overcome the life-endangering influence of low temperature and to survive freezing. Cold adaptation includes a complex range of structural and functional adaptations at the level of all cellular constituents, such as membranes, proteins, metabolic activity, and mechanisms to avoid the destructive effect of intracellular ice formation. These strategies offer multiple biotechnological applications of cold-adapted organisms and/or their products in various fields. In this review, we describe the mechanisms of microorganisms, plants, and animals to cope with the cold and the resulting biotechnological perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams WW, Zarter CR, Ebbert V, Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. Bioscience 54:41–49

    Google Scholar 

  • Aguilar PS, Cronan JE Jr, de Mendoza D (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipids desaturase. J Bacteriol 180:2194–2200

    PubMed  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, London

    Google Scholar 

  • Alkasrawi M, Nandakumar R, Margesin R, Schinner F, Mattiasson B (1999) A microbial biosensor based on Yarrowia lipolytica for the off-line determination of middle-chain alkanes. Biosens Bioelectron 14:723–727

    PubMed  CAS  Google Scholar 

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry (Mosc) 68:945–951

    CAS  Google Scholar 

  • Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    PubMed  CAS  Google Scholar 

  • Ashworth EN, Pearce RS (2002) Extracellular freezing in leaves of freezing-sensitive species. Planta 214:798–805

    PubMed  CAS  Google Scholar 

  • Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    PubMed  CAS  Google Scholar 

  • Benson E, Bremner D (2004) Oxidative stress in the frozen plant: a free radical point of view. In: Benson E, Fuller B, Lane N (eds) Life in the frozen state. CRC Press, Boca Raton, FL, pp 205–241

    Google Scholar 

  • Benson E, Fuller B, Lane N (eds) (2004) Life in the frozen state. CRC Press, Boca Raton, FL, pp 645–657

    Google Scholar 

  • Bilgen T, English TE, McMullen DC, Storey KB (2001) EsMlp, a muscle-LIM protein gene, is up-regulated during cold exposure in the freeze-avoiding larvae of Epiblema scudderiana. Cryobiology 43:11–20

    PubMed  CAS  Google Scholar 

  • Block W (2003) Water or ice?—The challenge for invertebrate cold survival. Sci Prog 86:77–101

    Article  PubMed  CAS  Google Scholar 

  • Bodner M, Larcher W (1987) Chilling susceptibility of different organs and tissues of Saintpaulia ionantha and Coffea arabica. Angew Bot 61:225–242

    Google Scholar 

  • Bowles DJ, Lillford PJ, Rees DA, Shanks IA (eds) (2002) Coping with the cold: the molecular and structural biology of cold stress survivors. Philos Trans R Soc Lond B Biol Sci 357:829–955

    Google Scholar 

  • Braddock JF, Ruth ML, Walworth JL, McCarthy KA (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31:2078–2084

    CAS  Google Scholar 

  • Bravo L-A, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196

    PubMed  CAS  Google Scholar 

  • Buchholz DR, Fu L, Shi YB (2004) Cryopreservation of Xenopus transgenic lines. Mol Reprod Dev 67:65–69

    PubMed  CAS  Google Scholar 

  • Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27:507–528

    Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66(10):4514–4517

    PubMed  CAS  Google Scholar 

  • Carter J, Brennan R, Wisniewski M (2001) Patterns of ice formation and movement in blackcurrant. HortScience 36:855–859

    Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    PubMed  CAS  Google Scholar 

  • Chen TH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73:71–75

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2006) Gene regulation during cold acclimation in plants. Phys Plant 126:52–61

    CAS  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-grand) 50:631–642

    CAS  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438

    PubMed  CAS  Google Scholar 

  • Costanzo JP, Iverson JB, Wright MF, Lee RE (1995) Cold-hardiness and overwintering strategies of hatchlings in an assemblage of northern turtles. Ecology 76:1772–1785

    Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:570–599

    Google Scholar 

  • Cummings SP, Black GW (1999) Polymer hydrolysis in a cold climate. Extremophiles 3:81–87

    PubMed  CAS  Google Scholar 

  • D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925

    PubMed  CAS  Google Scholar 

  • Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond B Biol Sci 357:927–935

    PubMed  CAS  Google Scholar 

  • Delille D, Coulon F, Pelletier E (2004) Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils. Microb Ecol 47:407–415

    PubMed  CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    PubMed  CAS  Google Scholar 

  • Du X, Takagi H (2005) N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. J Biochem (Tokyo) 138:391–397

    CAS  Google Scholar 

  • Duilio A, Madonna S, Tutino ML, Pirozzi M, Sannia G, Marino G (2004) Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8:125–132

    PubMed  CAS  Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    PubMed  CAS  Google Scholar 

  • Duman JG, Verleye D, Li N (2002) Site-specific forms of antifreeze protein in the beetle Dendroides canadensis. J Comp Physiol [B] 172:547–552

    CAS  Google Scholar 

  • Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM (2004) Antifreeze proteins in Alaskan insects and spiders. J Insect Physiol 50:259–266

    PubMed  CAS  Google Scholar 

  • Duncker BP, Davies PL, Walker VK (1999) Increased gene dosage augments antifreeze protein levels in transgenic Drosophila melanogaster. Transgenic Res 8:45–50

    PubMed  CAS  Google Scholar 

  • Edashige K, Yamaji Y, Kleinhans FW, Kasai M (2003) Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation. Biol Reprod 68:87–94

    PubMed  CAS  Google Scholar 

  • Eddy SF, Storey KB (2002) Dynamic use of cDNA arrays: heterologous probing for gene discovery and exploration of organismal adaptation to environment stress. In: Storey KB, Storey JM (eds) Cell and molecular responses to stress, vol 3. Elsevier, Amsterdam, pp 315–325

    Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    PubMed  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic bacteria. FEMS Microbiol Rev 18:189–202

    CAS  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267

    PubMed  CAS  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    PubMed  CAS  Google Scholar 

  • Franks F, Mathias SF, Hatley RH (1990) Water, temperature and life. Phil Trans R Soc Lond B Biol Sci 326:517–533

    CAS  Google Scholar 

  • Fuller B, Paynter S (2004) Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online 9:680–691

    Article  PubMed  Google Scholar 

  • Gerday C, Hoyoux A, Francois JM, Dubois P, Baise E, Jennes I, Genicot S (2001) Cold-active beta galactosidase, the process for its preparation and the use thereof. Patent WO104276, January 18

  • Glansdorff N, Xu J (2002) Microbial life at low temperatures: mechanisms of adaptation and extreme biotopes. Implications for exobiology and the origin of life. Recent Res Devel Microbiol 6:1–21

    CAS  Google Scholar 

  • Glenister PH, Whittingham DG, Wood MJ (1990) Genome cryopreservation: a valuable contribution to mammalian genetic research. Genet Res 56:253–258

    Article  PubMed  CAS  Google Scholar 

  • Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R (2004) Biology of the cold adapted archaeon, Methanococcoides burtonii determined by proteomics using liquid chromatography-tandem mass spectrometry. J Proteome Res 3:1164–1176

    PubMed  CAS  Google Scholar 

  • Gounot AM, Russell NJ (1999) Physiology of cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Springer, Berlin Heidelberg New York, pp 33–55

    Google Scholar 

  • Graether SP, Sykes BD (2004) Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins. Eur J Biochem 271:3285–3296

    PubMed  CAS  Google Scholar 

  • Griffith M, Ewart KV (1995) Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 13:375–402

    PubMed  CAS  Google Scholar 

  • Griffith M, Antikainen M, Hon W-C, Pihakaski-Maunsbach K, Yu X-M, Chun JU, Yang DSC (1997) Antifreeze proteins in winter rye. Physiol Plant 100:327–332

    CAS  Google Scholar 

  • Gusta LV, Burke MJ, Kapoor AC (1975) Determination of unfrozen water in winter cereals at sub-freezing temperatures. Plant Physiol 56:707–709

    PubMed  CAS  Google Scholar 

  • Hacker J, Neuner G (2006) Photosynthetic capacity and PS II efficiency of the evergreen alpine cushion plant Saxifraga paniculata during winter at different altitudes. Arct Antarct Alp Res 38(2):198–205

    Google Scholar 

  • Hagedorn M, Peterson A, Mazur P, Kleinhans FW (2004) High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option. Cryobiology 49:181–189

    PubMed  CAS  Google Scholar 

  • Häggblom M, Margesin R (2005) Microbial life in cold ecosystems. FEMS Microbiol Ecol, Thematic Issue, 53:186

  • Hew C, Poon R, Xiong F, Gauthier S, Shears M, King M, Davies P, Fletcher G (1999) Liver-specific and seasonal expression of transgenic Atlantic salmon harboring the winter flounder antifreeze protein gene. Transgenic Res 8:405–414

    PubMed  CAS  Google Scholar 

  • Hightower R, Baden K, Penzes E, Lund P, Dunsmuir P (1991) Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 17:1013–1021

    PubMed  CAS  Google Scholar 

  • Hiilovaara-Teijo M, Palva ET (1999) Molecular responses in cold-adapted plants. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Ecology, physiology, enzymology and molecular biology. Springer, Berlin Heidelberg New York, pp 349–384

    Google Scholar 

  • Hincha DK, DeVries AL, Schmitt JM (1993) Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes—comparison with cryotoxic sugar acids. Biochim Biophys Acta 1146:258–264

    PubMed  CAS  Google Scholar 

  • Hirsh AG, Williams RJ, Meryman HT (1985) A novel method of natural cryoprotection. Intracellular glass formation in deeply frozen Populus. Plant Physiol 79:41–56

    PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (eds) (1984) Biochemical adaptations. Princeton University Press, Princeton, pp 355–449

    Google Scholar 

  • Hoshino T, Fujiwara M, Suzuki K, Miura K, Kondo H, Ohgiya S, Tsuda S, Yumoto I (2006) Antifreeze proteins in cold-adapted fungi. In: Margesin R (ed) Abstracts of the International Conference on Alpine and Polar Microbiology, Innsbruck, Austria

  • Huner NPA, Öquist G, Melis A (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW (eds) Advances in photosynthesis and respiration. Light-harvesting antennas in photosynthesis, vol 13. Kluwer, Dordrecht, pp 402–421

    Google Scholar 

  • Ingraham JL, Stokes JL (1959) Psychrophilic bacteria. Bacteriol Rev 23:97–108

    PubMed  CAS  Google Scholar 

  • Izawa S, Ikeda K, Maeta K, Inoue Y (2004) Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology. Appl Microbiol Biotechnol 66:303–305

    PubMed  CAS  Google Scholar 

  • Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, Vairamani M, Narayanan K, Rao CM, Shivaji S (2000) Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol 173:418–424

    PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    PubMed  CAS  Google Scholar 

  • Joanisse DR, Storey KB (1996) Oxidative damage and antioxidants in Rana sylvatica, the freeze tolerant wood frog. Am J Physiol 271:R545–R553

    PubMed  CAS  Google Scholar 

  • Johnston IA (2003) Muscle metabolism and growth in Antarctic fishes (suborder Notothenioidei): evolution in a cold environment. Comp Biochem Physiol B Biochem Mol Biol 136:701–713

    PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69:4282–4284

    PubMed  CAS  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol 17:287–291

    PubMed  CAS  Google Scholar 

  • Kolesnichenko AV, Pobezhimova TP, Voinikov VK (2000) Cold-shock proteins in plants. Russ J Plant Physiol 47:549–554

    CAS  Google Scholar 

  • Kourkoutas Y, Douma M, Koutinas AA, Kanellaki M, Banat IM, Marchant R (2003) Continuous winemaking fermentation using quince-immobilized yeast at room and low temperatures. Process Biochem 39:143–148

    CAS  Google Scholar 

  • Kristiansen E, Zachariassen KE (2005) The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51(3):262–280

    PubMed  CAS  Google Scholar 

  • Kristjansdottir S, Gudmundsdottir A (2000) Propeptide dependent activation of the Antarctic krill euphauserase precursor produced in yeast. Eur J Biochem 267:2632–2639

    PubMed  CAS  Google Scholar 

  • Larcher W (2003) Physiological plant ecology. Ecophysiology and stress physiology of functional groups, 4th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lettinga G, Rebac S, van Lier J, Zeman G (1999) The potentials of sub-mesophilic and/or psychrophilic anaerobic treatment of low strength wastewaters. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin Heidelberg New York, pp 221–234

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol 1, 2nd edn. Academic, New York

    Google Scholar 

  • Lewis JM, Ewart KV, Driedzic WR (2004) Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production. Physiol Biochem Zool 77:415–422

    PubMed  CAS  Google Scholar 

  • Lindow SE, Leveau JH (2002) Phyllosphere microbiology. Curr Opin Biotechnol 13:238–243

    PubMed  CAS  Google Scholar 

  • Liu HC, He Z, Rosenwaks Z (2003) Mouse ovarian tissue cryopreservation has only a minor effect on in vitro follicular maturation and gene expression. J Assist Reprod Genet 20:421–431

    PubMed  Google Scholar 

  • Loik ME, Still CJ, Huxman TE, Harte J (2004) In situ photosynthetic freezing tolerance for plants exposed to a global warming manipulation in the Rocky Mountains, Colorado, USA. New Phytol 162:331–341

    Google Scholar 

  • Lundheim R (2002) Physiological and ecological significance of biological ice nucleators. Philos Trans R Soc Lond B Biol Sci 357:937–943

    PubMed  CAS  Google Scholar 

  • Marentes E, Griffith M, Mlynarz A, Brush RA (1993) Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiol Plant 87:499–507

    CAS  Google Scholar 

  • Margesin R (2004) Bioremediation of petroleum hydrocarbon-polluted soils in extreme temperature environments. In: Singh A, Ward OP (eds) Applied bioremediation and phytoremediation, soil biology, vol 1. Springer, Berlin Heidelberg New York, pp 215–234

    Google Scholar 

  • Margesin R, Nogi Y (2004) Psychropiezophilic microorganisms (review). Cell Mol Biol (Noisy-le-grand) 50:429–436

    CAS  Google Scholar 

  • Margesin R, Schinner F (1992) A comparison of extracellular proteases from three psychrotrophic strains of Pseudomonas fluorescens. J Gen Appl Microbiol 38:209–225

    CAS  Google Scholar 

  • Margesin R, Schinner F (eds) (1999a) Cold-adapted organisms. Ecology, physiology, enzymology and molecular biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Margesin R, Schinner F (eds) (1999b) Biotechnological applications of cold-adapted organisms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    PubMed  CAS  Google Scholar 

  • Margesin R, Zacke G, Schinner F (2002a) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93

    Google Scholar 

  • Margesin R, Feller G, Gerday C, Russell NJ (2002b) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton G (ed) The encyclopedia of environmental microbiology, vol 2. Wiley, New York, pp 871–885

    Google Scholar 

  • Margesin R, Gander S, Zacke G, Gounot AM, Schinner F (2003a) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458

    PubMed  CAS  Google Scholar 

  • Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003b) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    PubMed  CAS  Google Scholar 

  • Margesin R, Fonteyne PA, Redl B (2004) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75

    Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459

    PubMed  CAS  Google Scholar 

  • Marx JC, Blaise V, Collins T, D’Amico S, Delille D, Gratia E, Hoyoux A, Huston AL, Sonan G, Feller G, Gerday C (2004) A perspective on cold enzymes: current knowledge and frequently asked questions. Cell Mol Biol (Noisy-le-grand) 50:643–655

    CAS  Google Scholar 

  • Mautner MN (2005) Life in the cosmological future: resources, biomass and populations. JBIS J Br Interplanet Soc 58:167–180

    Google Scholar 

  • Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    PubMed  CAS  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidmann JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    PubMed  CAS  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    PubMed  CAS  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic shelf ecosystem. FEMS Microbiol Ecol 53:73–87

    PubMed  CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    CAS  Google Scholar 

  • Nakasone K (2004) Whole-genome analysis of deep-sea piezophilic and psychrophilic bacterium, Shewanella violacea strain DSS12. J Jpn Soc Biosci Biotechnol Agrochem 78:402–406

    CAS  Google Scholar 

  • Neuner G, Ambach D, Aichner K (1999) Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiol 19:725–732

    PubMed  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol 47:541–568

    CAS  Google Scholar 

  • Nomura M, Muramoto Y, Ýasuda S, Takabe T, Kishitani S (1995) The accumulation of glycine betaine during cold acclimation in early and late cultivars of barley. Euphytica 83:247–250

    CAS  Google Scholar 

  • Odani M, Komatsu Y, Oka S, Iwahashi H (2003) Screening of genes that respond to cryopreservation stress using yeast DNA microarray. Cryobiology 47:155–164

    PubMed  CAS  Google Scholar 

  • Ohgiya S, Hoshino T, Okuyama H, Tanka S, Ishizaki K (1999) Biotechnology f enzymes from cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin Heidelberg New York, pp 17–34

    Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    PubMed  Google Scholar 

  • Ottander C, Campbell D, Öquist G (1995) Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197:176–183

    CAS  Google Scholar 

  • Ouellet F (2002) Out of the cold: unveiling the elements required for low temperature induction of gene expression in plants. In Vitro Cell Dev Biol-Plant 38:396–403

    CAS  Google Scholar 

  • Ouellet F, Vazquez-Tello A, Sarhan F (1998) The wheat WCS120 promotor is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett 423:324–328

    PubMed  CAS  Google Scholar 

  • Papa R, Rippa V, Marino G, Duilio A (2006) Regulation of gene expression in cold living micro organisms: molecular aspects and biotechnological applications. In: Margesin R (ed) Abstracts of the International Conference on Alpine and Polar Microbiology

  • Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regul 29:47–76

    CAS  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot (Lond) 87:417–424

    CAS  Google Scholar 

  • Pearce RS, Fuller MP (2001) Freezing of barley studied by infrared video thermography. Plant Physiol 125:227–240

    PubMed  CAS  Google Scholar 

  • Peters ID, Rancourt DE, Davies PL, Walker VK (1993) Isolation and characterization of an antifreeze protein precursor from transgenic Drosophila: evidence for partial processing. Biochim Biophys Acta 1171:247–254

    PubMed  CAS  Google Scholar 

  • Prevost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Levesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81:1153–1161

    CAS  Google Scholar 

  • Price PB (2004) Life in solid ice on earth and other planetary bodies. In: Norris R, Stootman F (eds) Bioastronomy 2002: life among the stars, proceedings of IAU symposium #213. Astronomical Society of the Pacific, San Francisco 2003, pp 363–366

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    PubMed  CAS  Google Scholar 

  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner FO, Lupas AN, Amann R, Klenk HP (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902

    PubMed  CAS  Google Scholar 

  • Rajashekar CB, Burke MJ (1996) Freezing characteristics of rigid plant tissues. Plant Physiol 111:597–603

    PubMed  CAS  Google Scholar 

  • Renaut J, Hausman J-F, Wisniewski M (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109

    CAS  Google Scholar 

  • Ristic Z, Ashworth EN (1993) Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Protoplasma 172:111–123

    Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    PubMed  CAS  Google Scholar 

  • Romanenko LA, Schumann P, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E (2002) Psychrobacter submarinus sp nov and Psychrobacter marincola sp nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol 52:1291–1297

    PubMed  CAS  Google Scholar 

  • Rossi G (1999) Biohydrometallurgical processes and temperature. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin Heidelberg New York, pp 291–308

    Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci 329:595–611

    Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    PubMed  CAS  Google Scholar 

  • Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    PubMed  CAS  Google Scholar 

  • Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145:767–779

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. In: Billings WD, Golley F, Lange OL, Olson S, Remmert H (eds) Ecological studies, vol 62. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Savitch LV, Leonardos ED, Krol M, Jansson S, Grodzinski B, Huner NPA, Oquist G (2002) Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ 25:761–771

    CAS  Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Senser M, Beck E (1982) Frost resistance in spruce (Picea abies (L.) Karst). IV. The lipid composition of frost resistant and frost sensitive spruce chloroplasts. Z Pflanzenphysiol 105:241–253

    CAS  Google Scholar 

  • Sheridan PP, Panasik N, Coombs JM, Brenchely JE (2000) Approaches for deciphering the structural basis of low temperature enzyme activity. Biochim Biophys Acta 1543:417–433

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Shivaji S (ed) (2004) Microbes from cold habitats: biodiversity, biotechnology and cold adaptation. Cell Mol Biol 50:501–667

    Google Scholar 

  • Siddiqui KS, Poljak A, Cavicchioli R (2004) Improved activity and stability of alkaline phosphatases from psychrophillic and mesophilic organisms by chemically modifying aliphatic or amino groups using tetracarboxy-benzophenone derivatives. Cell Mol Biol 50:657–667

    PubMed  CAS  Google Scholar 

  • Sinclair BJ, Addo-Bediako A, Chown SL (2003) Climatic variability and the evolution of insect freeze tolerance. Biol Rev Camb Philos Soc 78:181–195

    PubMed  Google Scholar 

  • Singh KS, Viraraghavan T (2004) Municipal wastewater treatment by UASB process: start-up at 20 degrees C and operation at low temperatures. Environ Technol 25:621–634

    Article  PubMed  CAS  Google Scholar 

  • Skirvin RM, Kohler E, Steiner H, Ayers D, Laughnan A, Norton MA, Warmund M (2000) The use of genetically engineered bacteria to control frost on strawberries and potatoes. Whatever happened to all of that research? Sci Hortic 84:179–189

    Google Scholar 

  • Somero GN (2004) Adaptation of enzymes to temperature: searching for basic “strategies”. Comp Biochem Physiol B Biochem Mol Biol 139:321–333

    PubMed  Google Scholar 

  • Steponkus PL, Webb MS (1992) Freeze-induced dehydration and membrane destabilization in plants. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life: comparative analysis of water relationships at the organismic, cellular and molecular level. Springer, Berlin Heidelberg New York, pp 338–362

    Google Scholar 

  • Storey KB (1997) Organic solutes in freezing tolerance. Comp Biochem Physiol A Physiol 117:319–326

    PubMed  CAS  Google Scholar 

  • Storey KB (2004) Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48:134–145

    PubMed  CAS  Google Scholar 

  • Storey KB (2006) Reptile freeze tolerance: metabolism and gene expression. Cryobiology 52(1):1–16

    PubMed  CAS  Google Scholar 

  • Storey KB, McMullen DC (2004) Insect cold-hardiness: new advances using gene screening technology. In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanisms, adaptation and application. Biological Papers of the University of Alaska #27, Fairbanks, pp 275–281

  • Storey KB, Storey JM (1996) Natural freezing survival in animals. Ann Rev Ecolog Syst 27:365–386

    Google Scholar 

  • Storey JM, Storey KB (2004a) Cold hardiness and freeze tolerance. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Wiley, Hoboken, pp 473–503

    Google Scholar 

  • Storey KB, Storey JM (2004b) Physiology, biochemistry and molecular biology of vertebrate freeze tolerance: the wood frog. In: Benson E, Fuller B, Lane N (eds) Life in the frozen state. CRC Press, Boca Raton, FL, pp 243–274

    Google Scholar 

  • Storey KB, Baust JG, Wolanczyk JP (1992) Biochemical modification of the plasma ice nucleating activity in a freeze tolerant frog. Cryobiology 29:374–384

    PubMed  CAS  Google Scholar 

  • Stroud RM, Miercke LJ, O’Connell J, Khademi S, Lee JK, Remis J, Harries W, Robles Y, Akhavan D (2003) Glycerol facilitator GlpF and the associated aquaporin family of channels. Curr Opin Struct Biol 13:424–431

    PubMed  CAS  Google Scholar 

  • Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol 40:235–244

    PubMed  CAS  Google Scholar 

  • Tahtiharju S, Sangwan V, Monroy AF, Dhinsda RS, Borg M (1997) The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role of calcium. Planta 203:442–447

    PubMed  CAS  Google Scholar 

  • Tanghe A, Van Dijck P, Colavizza D, Thevelein JM (2004) Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Appl Environ Microbiol 70:3377–3382

    PubMed  CAS  Google Scholar 

  • Tanghe A, Kayingo G, Prior BA, Thevelein JM, Van Dijck P (2005) Heterologous aquaporin (AQY2-1) expression strongly enhances freeze tolerance of Schizosaccharomyces pombe. J Mol Microbiol Biotechnol 9:52–56

    PubMed  CAS  Google Scholar 

  • Tantau H, Balko C, Brettschneider B, Melz G, Dörffling K (2004) Improved frost tolerance and winter survival in winter barley (Hordeum vulgare L.) by in vitro selection of proline over-accumulating lines. Euphytica 139:19–32

    CAS  Google Scholar 

  • Taschler D, Neuner G (2004) Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ 27:737–746

    Google Scholar 

  • Tervit HR, Adams SL, Roberts RD, McGowan LT, Pugh PA, Smith JF, Janke AR (2005) Successful cryopreservation of Pacific oyster (Crassostrea gigas) oocytes. Cryobiology 51:142–151

    PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    PubMed  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2005) Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53:15–26

    PubMed  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    PubMed  CAS  Google Scholar 

  • Tutino ML, Duilio A, Parrilli E, Remaut E, Sannia G, Marino G (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperatures. Extremophiles 5:257–264

    PubMed  CAS  Google Scholar 

  • Tyshenko MG, Walker VK (2004) Hyperactive spruce budworm antifreeze protein expression in transgenic Drosophila does not confer cold shock tolerance. Cryobiology 49:28–36

    PubMed  CAS  Google Scholar 

  • Uemura M, Yoshida S (1984) Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 75:818–826

    PubMed  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    PubMed  CAS  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    CAS  Google Scholar 

  • Ulmer W (1937) Über den Jahresgang der Frosthärte einiger immergrüner Arten der alpinen Stufe, sowie Zirbe und Fichte. Jb Wiss Bot 84:553–592

    Google Scholar 

  • Van Buskirk HA, Thomashow MF (2006) Arabidopsis transcription factors regulating cold acclimation. Physiol Plant 126:72–80

    Google Scholar 

  • Vigh L, Los DA, Horvath I, Murata N (1993) The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 90:9090–9094

    PubMed  CAS  Google Scholar 

  • Voituron Y, Servais S, Romestaing C, Douki T, Barré H (2005) Oxidative DNA damage and antioxidant defenses in the European common lizard (Lacerta vivipara) in supercooled and frozen states. Cryobiology 51(1):74–82

    Google Scholar 

  • Wallis JG, Wang H, Guerra DJ (1997) Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol 35:323–330

    PubMed  CAS  Google Scholar 

  • Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye—two cereals at the extremes of freezing tolerance. Plant Physiol 104:467–478

    PubMed  CAS  Google Scholar 

  • Weber MHW, Marahiel MA (2002) Coping with the cold: the cold shock response in the soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci 357:895–907

    PubMed  CAS  Google Scholar 

  • Wharton DA (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol [B] 173:621–628

    CAS  Google Scholar 

  • Wharton DA, Barrett J, Goodall G, Marshall CJ, Ramlov H (2005) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology 51:198–207

    PubMed  CAS  Google Scholar 

  • Wildt DE (2000) Genome resource banking for wildlife research, management, and conservation. ILAR J 41:228–234

    PubMed  CAS  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) Popp the question: what do Lea proteins do? Trends Plant Sci 9:13–17

    PubMed  CAS  Google Scholar 

  • Wisniewski M, Fuller M (1999) Ice nucleation and deep supercooling in plants: new insights using infrared thermography. In: Margesin R, Schinner F (eds) Cold adapted organisms. Ecology, physiology, enzymology and molecular biology. Springer, Berlin Heidelberg New York, pp 105–118

    Google Scholar 

  • Wisniewski M, Lindow SE, Ashworth EN (1997) Observations of ice nucleation and propagation in plants using infrared video thermography. Plant Physiol 113:327–334

    PubMed  CAS  Google Scholar 

  • Wisniewski M, Bassett C, Gusta LV (2003) An overview of cold hardiness in woody plants: seeing the forest through the trees. HortScience 38:952–959

    Google Scholar 

  • Wolfe DA, Hameedi MH, Galt JA, Watabayashi G, Shrot J, O’Claire C, Rice S, Michel J, Payne JR, Braddock J, Hanna S, Sale D (1994) The fate of the oil spilled from the Exxon Valdez. Environ Sci Technol 28:561A–568A

    Article  Google Scholar 

  • Wong PTW, McBeath JH (1999) Plant protection by cold-adapted fungi. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin Heidelberg New York, pp 177–190

    Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Google Scholar 

  • Yaginuma O, Yamashita O (1979) NAD-dependent sorbitol dehydrogenase activity in relation to the termination of diapause in eggs of Bombyx mori. Insect Biochem 9:547–553

    CAS  Google Scholar 

  • Yin LJ, Chen ML, Tzeng SS, Chiou TK, Jiang ST (2005) Properties of extracellular ice-nucleating substances from Pseudomonas fluorescens MACK-4 and its effect on the freezing of some food materials. Fisheries Sci 71:941–947

    CAS  Google Scholar 

  • Yokoigawa K, Okubo Y, Soda K, Misono H (2003) Improvement in thermostability and psychrophilicity of psychrophilic alanine racemase by site-directed mutagenesis. J Mol Catal B Enzym 23:389–395

    CAS  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41:257–279

    PubMed  CAS  Google Scholar 

  • Zbikowska HM (2003) Fish can be first—advances in fish transgenesis for commercial applications. Transgenic Res 12:379–389

    PubMed  CAS  Google Scholar 

  • Zhu J-J, Beck E (1991) Water relations of Pachysandra leaves during freezing and thawing. Plant Physiol 97:1146–1153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Margesin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margesin, R., Neuner, G. & Storey, K.B. Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94, 77–99 (2007). https://doi.org/10.1007/s00114-006-0162-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0162-6

Keyword

Navigation